Plasma circulating microRNAs associated with obesity, body fat distribution, and fat mass: the Rotterdam Study

Csige I, Ujvárosy D, Szabó Z, Lőrincz I, Paragh G, Harangi M, et al. The impact of obesity on the cardiovascular system. J Diabetes Res. 2018;2018:3407306.

PubMed  PubMed Central  Google Scholar 

Ghaben AL, Scherer PE. Adipogenesis and metabolic health. Nat Rev Mol Cell Biol. 2019;20:242–58.

CAS  PubMed  Google Scholar 

Bovet P, Chiolero A, Gedeon J. Health effects of overweight and obesity in 195 Countries. N Engl J Med. 2017;377:1495–6.

PubMed  Google Scholar 

Lin X, Li H. Obesity: epidemiology, pathophysiology, and therapeutics. Front Endocrinol (Lausanne). 2021;12:706978.

Google Scholar 

Lovejoy JC. The menopause and obesity. Prim Care. 2003;30:317–25.

PubMed  Google Scholar 

Christakis NA, Fowler JH. The spread of obesity in a large social network over 32 years. N Engl J Med. 2007;357:370–9.

CAS  PubMed  Google Scholar 

Wardle J, Haase AM, Steptoe A, Nillapun M, Jonwutiwes K, Bellisie F. Gender differences in food choice: the contribution of health beliefs and dieting. Ann Behav Med. 2004;27:107–16.

PubMed  Google Scholar 

Yang W, He Kelly TJ. Genetic epidemiology of obesity. Epidemiol Rev. 2007;29:49–61.

PubMed  Google Scholar 

Després J-P, Lemieux I. Abdominal obesity and metabolic syndrome. Nature. 2006;444:881–7.

PubMed  Google Scholar 

Ortega FB, Lavie CJ, Blair SN. Obesity and cardiovascular disease. Circ Res. 2016;118:1752–70.

CAS  PubMed  Google Scholar 

Jensen MD. Role of body fat distribution and the metabolic complications of obesity. J Clin Endocrinol Metab. 2008;93:s57–63.

CAS  PubMed  PubMed Central  Google Scholar 

Sigulem DM, Devincenzi MU, Lessa AC. Diagnosis of child and adolescent nutritional status. J Pediatr. 2000;76:S275–84.

Google Scholar 

Neovius M, Linné Y, Barkeling B, Rössner S. Discrepancies between classification systems of childhood obesity. Obes Rev. 2004;5:105–14.

CAS  PubMed  Google Scholar 

Oreopoulos A, Kalantar-Zadeh K, Sharma AM, Fonarow GC. The obesity paradox in the elderly: potential mechanisms and clinical implications. Clin Geriatr Med. 2009;25:643–59.

PubMed  Google Scholar 

Liu DJ, Peloso GM, Yu H, Butterworth AS, Wang X, Mahajan A, et al. Exome-wide association study of plasma lipids in> 300,000 individuals. Nate Genet. 2017;49:1758–66.

CAS  Google Scholar 

Emdin CA, Khera AV, Natarajan P, Klarin D, Zekavat SM, Hsiao AJ, et al. Genetic association of waist-to-hip ratio with cardiometabolic traits, type 2 diabetes, and coronary heart disease. JAMA. 2017;317:626–34.

PubMed  PubMed Central  Google Scholar 

Lotta LA, Gulati P, Day FR, Payne F, Ongen H, Van De Bunt M, et al. Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nat Genet. 2017;49:17–26.

CAS  PubMed  Google Scholar 

Cao Q, Yu S, Xiong W, Li Y, Li H, Li J, et al. Waist-hip ratio as a predictor of myocardial infarction risk: a systematic review and meta-analysis. Medicine (Baltimore). 2018;97:e11639.

Google Scholar 

Otsuka M, Kishikawa T, Yoshikawa T, Yamagami M, Ohno M, Takata A, et al. MicroRNAs and liver disease. J Hum Genet. 2017;62:75–80.

CAS  PubMed  Google Scholar 

Schueller F, Roy S, Vucur M, Trautwein C, Luedde T, Roderburg C. The role of miRNAs in the pathophysiology of liver diseases and toxicity. Int J Mol Sci. 2018;19:261.

PubMed Central  Google Scholar 

Pirola CJ, Gianotti TF, Castaño GO, Mallardi P, San Martino J, Ledesma MMGL, et al. Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis. Gut. 2015;64:800–12.

CAS  PubMed  Google Scholar 

Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, et al. miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. Cells. 2020;9:276.

CAS  PubMed Central  Google Scholar 

Landrier J-F, Derghal A, Mounien L. MicroRNAs in obesity and related metabolic disorders. Cells. 2019;8:859.

CAS  PubMed Central  Google Scholar 

Hilton C, Neville MJ, Wittemans LBL, Todorcevic M, Pinnick KE, Pulit SL, et al. MicroRNA-196a links human body fat distribution to adipose tissue extracellular matrix composition. EBioMedicine. 2019;44:467–75.

PubMed  PubMed Central  Google Scholar 

Ikram MA, Brusselle G, Ghanbari M, Goedegebure A, Ikram MK, Kavousi M, et al. Objectives, design and main findings until 2020 from the Rotterdam Study. Eur J Epidemiol. 2020;35:483–517.

PubMed  PubMed Central  Google Scholar 

Alferink LJM, Trajanoska K, Erler NS, Schoufour JD, de Knegt RJ, Ikram MA, et al. Nonalcoholic fatty liver disease in the Rotterdam study: about muscle mass, sarcopenia, fat mass, and fat distribution. J Bone Miner Rese. 2019;341254–63.

CAS  Google Scholar 

Alberti KGMM, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation. 2009;120:1640–5.

CAS  PubMed  Google Scholar 

Voortman T, Kiefte-de Jong JC, Ikram MA, Stricker BH, van Rooij FJA, Lahousse L, et al. Adherence to the 2015 Dutch dietary guidelines and risk of non-communicable diseases and mortality in the Rotterdam Study. Eur J Epidemiol. 2017;32:993–1005.

CAS  PubMed  PubMed Central  Google Scholar 

World Health Organization & International Diabetes Federation. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: report of a WHO/IDF consultation. World Health Organization; 2006. https://apps.who.int/iris/handle/10665/43588.

Santosa S, Jensen MD. Why are we shaped differently, and why does it matter?. Am J Physiol Endocrinol Metab. 2008;295:E531–5.

CAS  PubMed  PubMed Central  Google Scholar 

Eminaga S, Christodoulou DC, Vigneault F, Church GM, Seidman JG. Quantification of microRNA expression with next-generation sequencing. Curr Protoc Mol Biol. 2013;103:1–4.

Google Scholar 

Szelenberger R, Kacprzak M, Saluk-Bijak J, Zielinska M, Bijak M. Plasma MicroRNA as a novel diagnostic. Clin Chim Acta. 2019;499:98–107.

CAS  PubMed  Google Scholar 

Kunej T, Skok DJ, Zorc M, Ogrinc A, Michal JJ, Kovac M, et al. Obesity gene atlas in mammals. J Genom. 2013;1:45.

Google Scholar 

Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, et al. miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 2009;37:D98–104.

CAS  PubMed  Google Scholar 

Dumortier O, Hinault C, Van Obberghen E. MicroRNAs and metabolism crosstalk in energy homeostasis. Cell Metab. 2013;18:312–24.

CAS  PubMed  Google Scholar 

Ghanbari M, Sedaghat S, De Looper HWJ, Hofman A, Erkeland SJ, Franco OH, et al. The association of common polymorphisms in mi R‐196a2 with waist to hip ratio and mi R‐1908 with serum lipid and glucose. Obesity. 2015;23:495–503.

CAS  PubMed  Google Scholar 

Cheng M, Mei B, Zhou Q, Zhang M, Huang H, Han L, et al. Computational analyses of obesity associated loci generated by genome-wide association studies. PLoS ONE. 2018;13:e0199987.

PubMed  PubMed Central  Google Scholar 

Ortega FJ, Mercader JM, Catalan V, Moreno-Navarrete JM, Pueyo N, Sabater M, et al. Targeting the circulating microRNA signature of obesity. Clin Chem. 2013;59:781–92.

CAS  PubMed  Google Scholar 

Youssef EM, Elfiky AM, Abu-Shahba N, Elhefnawi MM. Expression profiling and analysis of some miRNAs in subcutaneous white adipose tissue during development of obesity. Genes Nutr. 2020;15:1–14.

Google Scholar 

Zhang X, Mens MMJ, Abozaid YJ, Bos D, Darwish Murad S, de Knegt RJ, et al. Circulatory microRNAs as potential biomarkers for fatty liver disease: the Rotterdam study. Aliment Pharmacol Ther. 2021;53:432–42.

CAS  PubMed  Google Scholar 

Mens MMJ, Mustafa R, Ahmadizar F, Ikram MA, Evangelou M, Kavousi M, et al. MiR-139-5p is a causal biomarker for type 2 diabetes; Results from genome-wide microRNA profiling and Mendelian randomization analysis in a population-based study. 2021. https://www.medrxiv.org/content/10.1101/2021.05.13.21257090v1.full.

Ravanidis S, Grundler F, de Toledo FW, Dimitriou E, Tekos F, Skaperda Z, et al. Fasting-mediated metabolic and toxicity reprogramming impacts circulating microRNA levels in humans. Food Chem Toxicol. 2021;152:112187.

CAS  PubMed  Google Scholar 

Lin Y-Y, Chou C-F, Giovarelli M, Briata P, Gherzi R, Chen C-Y. KSRP and MicroRNA 145 are negative regulators of lipolysis in white adipose tissue. Mol Cell Biol. 2014;34:2339–49.

PubMed  PubMed Central  Google Scholar 

Kirby TJ, Walton RG, Finlin B, Zhu B, Unal R, Rasouli N, et al. Integrative mRNA-microRNA analyses reveal novel interactions related to insulin sensitivity in human adipose tissue. Physiol Genom. 2016;48:145–53.

CAS  Google Scholar 

Viesti A, Collares R, Salgado W Jr, Pretti da Cunha Tirapelli D, dos Santos JS. The expression of LEP, LEPR, IGF1 and IL10 in obesity and the relationship with microRNAs. PLoS ONE. 2014;9:e93512.

Google Scholar 

Pascut D, Tamini S, Bresolin S, Giraudi P, Basso G, Minocci A, et al. Differences in circulating microRNA signature in Prader–Willi syndrome and non-syndromic obesity. Endocr Connect. 2018;7:1262–74.

CAS  PubMed  PubMed Central  Google Scholar 

Liu X, He Y, Feng Z, Sheng J, Dong A, Zhang M, et al. miR-345-5p regulates adipogenesis via targeting VEGF-B. Aging. 2020;12:17114.

CAS  PubMed  PubMed Central  Google Scholar 

Zheng S, Guo S, Sun G, Shi Y, Wei Z, Tang Y, et al. Gain of metabolic benefit with ablation of miR-149-3p from subcutaneous adipose tissue in diet-induced obese mice. Mol Ther Nucleic Acids. 2019;18:194–203.

CAS  PubMed  PubMed Central  Google Scholar 

Xu L, Jiang L, Gu K, Liu Z, Xu X. Regulation of MicroRNA-378 expression in mature human adipose tissue cells by adiponectin, free fatty acids and dexamethasone. Trop J Pharm Res. 2018;17:29–34.

留言 (0)

沒有登入
gif