The multiple roles of LDH in cancer

Amin, M. B. et al. (eds) AJCC Cancer Staging Manual 8th edn (Springer, 2017).

Keung, E. Z. & Gershenwald, J. E. The eighth edition American Joint Committee on Cancer (AJCC) melanoma staging system: implications for melanoma treatment and care. Expert. Rev. Anticancer. Ther. 18, 775–784 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Petrelli, F. et al. Prognostic role of lactate dehydrogenase in solid tumors: a systematic review and meta-analysis of 76 studies. Acta Oncol. Stockh. Swed. 54, 961–970 (2015).

CAS  Article  Google Scholar 

Petrelli, F. et al. Prognostic and predictive role of elevated lactate dehydrogenase in patients with melanoma treated with immunotherapy and BRAF inhibitors: a systematic review and meta-analysis. Melanoma Res. 29, 1–12 (2019).

CAS  PubMed  Article  Google Scholar 

Markert, C. L., Shaklee, J. B. & Whitt, G. S. Evolution of a gene. Multiple genes for LDH isozymes provide a model of the evolution of gene structure, function and regulation. Science 189, 102–114 (1975).

CAS  PubMed  Article  Google Scholar 

Gallo, M. et al. Lactic dehydrogenase and cancer: an overview. Front. Biosci. Landmark Ed. 20, 1234–1249 (2015).

CAS  PubMed  Article  Google Scholar 

Nelson, D. L. & Cox, M. M. Lehninger Principles of Biochemistry 8th edn Ch. 15 (Macmillan, 2021).

Forkasiewicz, A. et al. The usefulness of lactate dehydrogenase measurements in current oncological practice. Cell. Mol. Biol. Lett. 25, 35 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Blanco, A. & Zinkham, W. H. Lactate dehydrogenases in human testes. Science 139, 601–602 (1963).

CAS  PubMed  Article  Google Scholar 

Gonyou, H. W. Behavioral methods to answer questions about sheep. J. Anim. Sci. 69, 4155–4160 (1991).

CAS  PubMed  Article  Google Scholar 

Goldberg, E. Immunochemical specificity of lactate dehydrogenase-X. Proc. Natl Acad. Sci. USA 68, 349–352 (1971).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Goldberg, E., Eddy, E. M., Duan, C. & Odet, F. LDHC: the ultimate testis-specific gene. J. Androl. 31, 86–94 (2010).

CAS  PubMed  Article  Google Scholar 

Makkonen, M. Myometrial energy metabolism during pregnancy and normal and dysfunctional labor. Acta Obstet. Gynecol. Scand. Suppl. 71, 1–68 (1977).

CAS  PubMed  Google Scholar 

Schumann, G. & Klauke, R. New IFCC reference procedures for the determination of catalytic activity concentrations of five enzymes in serum: preliminary upper reference limits obtained in hospitalized subjects. Clin. Chim. Acta 327, 69–79 (2003).

CAS  PubMed  Article  Google Scholar 

Roman, W. Quantitative estimation of lactate dehydrogenase isoenzymes in serum. I. Review of methods and distribution in human tissues. Enzymologia 36, 189–219 (1969).

CAS  PubMed  Google Scholar 

Khan, A. A., Allemailem, K. S., Alhumaydhi, F. A., Gowder, S. J. T. & Rahmani, A. H. The biochemical and clinical perspectives of lactate dehydrogenase: an enzyme of active metabolism. Endocr. Metab. Immune Disord. Drug. Targets 20, 855–868 (2020).

CAS  PubMed  Article  Google Scholar 

Bais, R. & Philcox, M. Approved recommendation on IFCC methods for the measurement of catalytic concentration of enzymes. Part 8. IFCC method for lactate dehydrogenase (l-lactate: NAD+ oxidoreductase, EC 1.1.1.27). International Federation of Clinical Chemistry (IFCC). Eur. J. Clin. Chem. Clin. Biochem. 32, 639–655 (1994).

CAS  PubMed  Google Scholar 

Amador, E., Dorfman, L. E. & Wacker, W. E. Serum lactic dehydrogenase activity: an analytical assessment of current assays. Clin. Chem. 12, 391–399 (1963).

CAS  PubMed  Article  Google Scholar 

Erickson, R. J. & Morales, D. R. Clinical use of lactic dehydrogenase. N. Engl. J. Med. 265, 531–534 (1961).

CAS  PubMed  Article  Google Scholar 

Sharma, P. R., Jain, S., Bamezai, R. N. K. & Tiwari, P. K. Utility of serum LDH isoforms in the assessment of mycobacterium tuberculosis induced pathology in TB patients of Sahariya tribe. Indian J. Clin. Biochem. 25, 57–63 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Agarwala, S. S. et al. LDH correlation with survival in advanced melanoma from two large, randomised trials (Oblimersen GM301 and EORTC 18951). Eur. J. Cancer Oxf. Engl. 45, 1807–1814 (2009).

Article  Google Scholar 

von Eyben, F. E. A systematic review of lactate dehydrogenase isoenzyme 1 and germ cell tumors. Clin. Biochem. 34, 441–454 (2001).

Article  Google Scholar 

von Eyben, F. E. et al. Serum lactate dehydrogenase isoenzyme 1 and prediction of death in patients with metastatic testicular germ cell tumors. Clin. Chem. Lab. Med. 39, 38–44 (2001).

Article  Google Scholar 

Bouafia, F. et al. Profiles and prognostic values of serum LDH isoenzymes in patients with haematopoietic malignancies. Bull. Cancer 91, E229–E240 (2004).

PubMed  Google Scholar 

Ho, J. et al. Importance of glycolysis and oxidative phosphorylation in advanced melanoma. Mol. Cancer 11, 76 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Khurana, P., Tyagi, N., Salahuddin, A. & Tyagi, S. P. Serum lactate dehydrogenase isoenzymes in breast tumours. Indian. J. Pathol. Microbiol. 33, 355–359 (1990).

CAS  PubMed  Google Scholar 

Bar, J. et al. Correlation of lactate dehydrogenase isoenzyme profile with outcome in patients with advanced colorectal cancer treated with chemotherapy and bevacizumab or cediranib: retrospective analysis of the HORIZON I study. Clin. Colorectal Cancer 13, 46–53 (2014).

CAS  PubMed  Article  Google Scholar 

Stubbs, M. & Griffiths, J. R. The altered metabolism of tumors: HIF-1 and its role in the Warburg effect. Adv. Enzym. Regul. 50, 44–55 (2010).

Article  Google Scholar 

Peppicelli, S., Andreucci, E., Ruzzolini, J., Bianchini, F. & Calorini, L. FDG uptake in cancer: a continuing debate. Theranostics 10, 2944–2948 (2020).

PubMed  PubMed Central  Article  Google Scholar 

He, T.-L. et al. The c-Myc-LDHA axis positively regulates aerobic glycolysis and promotes tumor progression in pancreatic cancer. Med. Oncol. 32, 187 (2015).

PubMed  PubMed Central  Article  Google Scholar 

Shim, H. et al. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc. Natl Acad. Sci. USA 94, 6658–6663 (1997).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Nagao, A., Kobayashi, M., Koyasu, S., Chow, C. C. T. & Harada, H. HIF-1-dependent reprogramming of glucose metabolic pathway of cancer cells and its therapeutic significance. Int. J. Mol. Sci. 20, 238 (2019).

PubMed Central  Article  Google Scholar 

Kolev, Y., Uetake, H., Takagi, Y. & Sugihara, K. Lactate dehydrogenase-5 (LDH-5) expression in human gastric cancer: association with hypoxia-inducible factor (HIF-1α) pathway, angiogenic factors production and poor prognosis. Ann. Surg. Oncol. 15, 2336–2344 (2008).

PubMed  Article  Google Scholar 

Cui, J. et al. FOXM1 promotes the Warburg effect and pancreatic cancer progression via transactivation of LDHA expression. Clin. Cancer Res. 20, 2595–2606 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Jiang, W., Zhou, F., Li, N., Li, Q. & Wang, L. FOXM1-LDHA signaling promoted gastric cancer glycolytic phenotype and progression. Int. J. Clin. Exp. Pathol. 8, 6756–6763 (2015).

PubMed  PubMed Central  Google Scholar 

Shi, M. et al. A novel KLF4/LDHA signaling pathway regulates aerobic glycolysis in and progression of pancreatic cancer. Clin. Cancer Res. 20, 4370–4380 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Fu, D. et al. HMGB2 is associated with malignancy and regulates Warburg effect by targeting LDHB and FBP1 in breast cancer. Cell Commun. Signal. 16, 8 (2018).

PubMed  PubMed Central  Article  Google Scholar 

Zha, X. et al. Lactate dehydrogenase B is critical for hyperactive mTOR-mediated tumorigenesis. Cancer Res. 71, 13–18 (2011).

CAS  PubMed  Article  Google Scholar 

Cui, J. et al. Suppressed expression of LDHB promotes pancreatic cancer progression via inducing glycolytic phenotype. Med. Oncol. 32, 143 (2015).

PubMed  Article  Google Scholar 

Leiblich, A. et al. Lactate dehydrogenase-B is silenced by promoter hypermethylation in human prostate cancer. Oncogene 25, 2953–2960 (2006).

CAS  PubMed  Article  Google Scholar 

Liu, J. et al. Aberrant FGFR tyrosine kinase signaling enhances the Warburg effect by reprogramming LDH isoform expression and activity in prostate cancer. Cancer Res. 78, 4459–4470 (2018).

CAS  PubMed  PubMed Central  Article 

留言 (0)

沒有登入
gif