Synthesis,characterization and biological activities of nitrogen-containing Combretastatin A-4 derivatives

Tozer GM, Kanthou C, Parkins CS, Hill SA. The biology of the combretastatins as tumour vascular targeting agents. Int J Exp Pathol. 2010;83:21–38. https://doi.org/10.1046/j.1365-2613.2002.00211.x.

Article  Google Scholar 

Holloway SE, Beck AL, Shivakumar JS, Fleming JB, Brekken RA. Selective blockade of vascular endothelial growth factor receptor 2 with an antibody against tumor-derived vascular endothelial growth factor controls the growth of human pancreatic adenocarcinoma xenografts. Ann Surgical Oncol. 2006;13:1145–55. https://doi.org/10.1245/ASO.2006.05.049.

Article  Google Scholar 

Siemann DW. The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by tumor-vascular disrupting agents. Cancer Treat Rev. 2011;37:63–74. https://doi.org/10.1016/j.ctrv.2010.05.001.

CAS  Article  PubMed  Google Scholar 

Siemann DW, Horsman MR. Modulation of the tumor vasculature and oxygenation to improve therapy. Pharmacol Pharmacol Therapeutics. 2015;153:107–24. https://doi.org/10.1016/j.pharmthera.2015.06.006.

CAS  Article  Google Scholar 

Steinmetz MO, Prota AE. Microtubule-targeting agents: strategies to hijack the cytoskeleton. Trends Cell Biol. 2018;153:107–24. https://doi.org/10.1016/J.tcb.2018.05.001.

Article  Google Scholar 

Tozer GM, Akerman S, Cross NA, Barber PR, Bjorndahl MA, Greco O. et al. Blood vessel maturation and response to vascular-disrupting therapy in single vascular endothelial growth factor-A isoform-producing tumors. Cancer Res. 2005;5:423–35. https://doi.org/10.1158/0008-5472.

Article  Google Scholar 

Dumontet C, Jordan MA. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov. 2021;9:790–803. https://doi.org/10.1038/nrd3253.

CAS  Article  Google Scholar 

Yang CP, Susan H. Taxol: the first microtubule stabilizing agent. Int J Mol Sci. 2017;18:1733. https://doi.org/10.3390/ijms18081733.

CAS  Article  PubMed Central  Google Scholar 

Risinger AL, Giles FJ, Mooberry SL. Microtubule dynamics as a target in oncology. Cancer Treat Rev. 2009;35:255–61. https://doi.org/10.1016/j.ctrv.2008.11.001.

CAS  Article  PubMed  Google Scholar 

Desai A, Mitchison, T J. Microtubule polymerization dynamics. Annu Rev Cell Developmental Biol. 1997;13:83–117. https://doi.org/10.1146/annurev.cellbio.13.1.83.

CAS  Article  Google Scholar 

Oakley BR. An abundance of tubulins. Trends Cell Biol. 2000;10:537–42. https://doi.org/10.1016/S0962-8924(00)01857-2.

CAS  Article  PubMed  Google Scholar 

Sharp DJ, Rogers GC, Scholey JM. Microtubule motors in mitosis. Nature. 2000;407:41–47. https://doi.org/10.1038/35024000.

CAS  Article  PubMed  Google Scholar 

Nam NH. Combretastatin A-4 analogues as antimitotic antitumor agents. Curr Medicinal Chem. 2003;10:1697–722. https://doi.org/10.2174/0929867033457151.

CAS  Article  Google Scholar 

Jordan A, Hadfield JA, Lawrence NJ, Mcgown AT. Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle. Medicinal Res Rev. 1998;18:259–96. https://doi.org/10.1002/(sici)1098-1128(199807)18:4<259::aid-med3>3.0.co;2-u.

CAS  Article  Google Scholar 

Jordan MA, Wilson A. Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004;4:253–65. https://doi.org/10.1038/nrc1317.

CAS  Article  PubMed  Google Scholar 

Tron GC, Pirali T, Sorba G, Pagliai F, Busacca S, Genazzani AA. Medicinal chemistry of combretastatin A4: Present and future directions. J Medicinal Chem. 2006;49:3033–44. https://doi.org/10.1021/jm0512903.

CAS  Article  Google Scholar 

Tozer GM, Kanthou C, Baguley BC. Disrupting tumour blood vessels. Nat Rev Cancer. 2005;5:423–35. https://doi.org/10.1038/nrc1628.

CAS  Article  PubMed  Google Scholar 

Cao WL, Zhang J, Tu XJ, Xu ZB, Wang M. Antiangiogenic activity research of the vascular endothelial growth factor receptor 2 extracellular region 3(KDR3). Yaowu Shengwu Jishu. 2013;20:203–6. https://doi.org/10.1016/j.pharmthera.2015.06.006.

CAS  Article  Google Scholar 

Pettit GR, Cragg GM, Herald DL. Isolation and structure of combretastatin. Can J Chem. 1982;60:1374–6. https://doi.org/10.1139/v82-202.

CAS  Article  Google Scholar 

Pettit GR, Singh SB. Isolation, structure, and synthesis of combretastatin A-2, A-3, and B-2. Can J Chem. 1987;65:2390–6. https://doi.org/10.1139/v87-399.

CAS  Article  Google Scholar 

Pettit GR, Singh SB, Niven ML, Hamel E. Isolation, structure, and synthesis of combretastatin A-1 and B-1, potent new inhibitors of microtubule assembly, derived from combretum caffrum. J Nat Products. 1987;50:119–31. https://doi.org/10.1021/np50049a016.

CAS  Article  Google Scholar 

Tozer GM, Kanthou C, Parkins CS, Hill SA. The biology of the combretastatins as tumour vascular targeting agents. Int J Exp Pathol. 2010;83:21–38. https://doi.org/10.1046/j.1365-2613.2002.00211.x.

Article  Google Scholar 

Chaplin DJ, Pettit GR, Hill SA. Anti-vascular approaches to solid tumour therapy: evaluation of combretastatin A4 phosphate. Anticancer Res. 1999;19:189–95.

CAS  PubMed  Google Scholar 

Karatoprak GE, Akkol EK, Gen Y, Bardakci H, Sobarzoz E. Combretastatins: an overview of structure, probable mechanisms of action and potential applications. Molecules. 2020;25:2560. https://doi.org/10.3390/molecules25112560.

CAS  Article  PubMed Central  Google Scholar 

Seddigi ZS, Malik MS, Saraswati AP, Ahmed S, Babalghith AO, Lamfon HA. et al. Recent advances in combretastatin based derivatives and prodrugs as antimitotic agents. Medicinal Chem Commun. 2017;8:1592–603. https://doi.org/10.1039/c7md00227k.

CAS  Article  Google Scholar 

Pettit GR, Singh SB, Hamel E, Lin CM, Alberts DS, Garcia KD. Isolation and structure of the strong cell growth and tubulin inhibitor combretastatin A-4. Experientia. 1989;45:209–11. https://doi.org/10.1007/BF01954881.

CAS  Article  PubMed  Google Scholar 

Greene LM, Meegan MJ, Zisterer DM. Combretastatins: more than just vascular targeting agents?. J Pharmacol Exp Therapeutics. 2015;355:217–27. https://doi.org/10.1124/jpet.115.226225.

CAS  Article  Google Scholar 

Lawrence NJ, Hepworth LA, Rennison D, McGown AT, Hadfield JA. Synthesis and anticancer activity of fluorinated analogues of combretastatin A-4. Chehminform. 2003;123:101–8. https://doi.org/10.1002/chin.200402243.

CAS  Article  Google Scholar 

Conforti F, Menichini F, Cachet X, Statti GA. Biological potential and structure-activity relationships of most recently developed vascular disrupting agents: an overview of new derivatives of natural combretastatin a-4. Curr Medicinal Chem. 2011;18:3035–81. https://doi.org/10.2174/092986711796391642.

Article  Google Scholar 

Nam NH. Combretastatin A-4 analogues as antimitotic antitumor agents. Curr Medicinal Chem. 2003;10:1697–722. https://doi.org/10.2174/0929867033457151.

CAS  Article  Google Scholar 

Bukhari SN, Kumar GB, Revankar HM, Qin HL. Development of combretastatins as potent tubulin polymerization inhibitors. Bioorg Chem. 2017;72:130–47. https://doi.org/10.1016/j.bioorg.2017.04.007.

CAS  Article  PubMed  Google Scholar 

Shan YS, Zhang J, Liu Z, Wang M, Dong Y. Developments of combretastatin A-4 derivatives as anticancer agents. Curr Medicinal Chem. 2011;18:523–38. https://doi.org/10.2174/092986711794480221.

CAS  Article  Google Scholar 

Cushman M, He HM, Lin CM, Hamel E. Synthesis and evaluation of a series of benzylaniline hydrochlorides as potential cytotoxic and antimitotic agents acting by inhibition of tubulin polymerization. J Medicinal Chem. 1993;36:2817–21. https://doi.org/10.1021/jm00071a012.

CAS  Article  Google Scholar 

Jaroch K, Karolak M, Gorski P, Jaroch A, Krajewski A, Ilnicka A. et al. Combretastatins: in vitro structure-activity relationship, mode of action and current clinical status. Pharmacol Rep. 2016;68:1266–75. https://doi.org/10.1016/j.pharep.2016.08.007.

CAS  Article  PubMed  Google Scholar 

Lin CM, Singh SB, Chu PS, Dempcy RO, Hamel E. Interactions of tubulin with potent natural and synthetic analogs of the antimitotic agent combretastatin: a structure-activity study. Mol Pharmacol. 1988;34:200–8. https://doi.org/10.1016/0160-5402(88)90018-6.

CAS  Article  PubMed  Google Scholar 

Chaudhary A, Pandeya S, Kumar P, Sharma P, Gupta S, Soni N. et al. Combretastatin A-4 analogs as anticancer agents. Mini Rev Medicinal Chem. 2007;7:1186–205. https://doi.org/10.2174/138955707782795647.

CAS  Article  Google Scholar 

Bukhari SN, Kumar GB, Revankar HM, Qin HL. Development of combretastatins as potent tubulin polymerization inhibitors. Bioorg Chem. 2017;72:130–47. https://doi.org/10.1016/j.bioorg.2017.04.007.

CAS  Article  PubMed  Google Scholar 

Edon V, David TS, Njardarson JT. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J Medicinal Chem. 2014;57:10257–74. https://doi.org/10.1021/jm501100b.

CAS  Article  Google Scholar 

Chen J, Tao XF, Ying HZ. Recent development of colchicine binding site inhibitors. Chinese. J Mod Appl Pharm. 2011;28:824–30. CNKI:SUN:XDYD.0.2011-09-010.

CAS  Google Scholar 

留言 (0)

沒有登入
gif