Modeling the transplacental transfer of small molecules using machine learning: a case study on per- and polyfluorinated substances (PFAS)

Huppertz B. The anatomy of the normal placenta. J Clin Pathol. 2008;61:1296–302. https://doi.org/10.1136/jcp.2008.055277.

CAS  Article  PubMed  Google Scholar 

Needham LL, Grandjean P, Heinzow B, Jørgensen PJ, Nielsen F, Patterson DG, et al. Partition of environmental chemicals between maternal and fetal blood and tissues. Environ Sci Technol. 2011;45:1121–6. https://doi.org/10.1021/es1019614.

CAS  Article  PubMed  Google Scholar 

Eryasa B, Grandjean P, Nielsen F, Valvi D, Zmirou-Navier D, Sunderland E, et al. Physico-chemical properties and gestational diabetes predict transplacental transfer and partitioning of perfluoroalkyl substances. Environ Int. 2019;130:104874. https://doi.org/10.1016/j.envint.2019.05.068.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Li J, Cai D, Chu C, Li Q, Zhou Y, Hu L, et al. Transplacental transfer of per- and polyfluoroalkyl substances (PFASs): differences between preterm and full-term deliveries and associations with placental transporter MRNA expression. Environ Sci Technol. 2020;54:5062–70. https://doi.org/10.1021/acs.est.0c00829.

CAS  Article  PubMed  Google Scholar 

Chen A, Park J-S, Linderholm L, Rhee A, Petreas M, DeFranco EA, et al. Hydroxylated polybrominated diphenyl ethers in paired maternal and cord sera. Environ Sci Technol. 2013;47:3902–8. https://doi.org/10.1021/es3046839.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Li M, Zeng X-W, Qian ZM, Vaughn MG, Sauvé S, Paul G, et al. Isomers of Perfluorooctanesulfonate (PFOS) in cord serum and birth outcomes in China: Guangzhou Birth Cohort Study. Environ Int. 2017;102:1–8. https://doi.org/10.1016/j.envint.2017.03.006

CAS  Article  PubMed  Google Scholar 

Ferguson KK, Rosen EM, Rosario Z, Feric Z, Calafat AM, McElrath TF, et al. Environmental phthalate exposure and preterm birth in the PROTECT birth cohort. Environ Int. 2019;132:105099. https://doi.org/10.1016/j.envint.2019.105099.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Syme MR, Paxton JW, Keelan JA. Drug transfer and metabolism by the human placenta. Clin Pharmacokinet. 2004;43:487–514. https://doi.org/10.2165/00003088-200443080-00001.

CAS  Article  PubMed  Google Scholar 

Wang A, Padula A, Sirota M, Woodruff TJ. Environmental influences on reproductive health: the importance of chemical exposures. Fertil Steril. 2016;106:905–29. https://doi.org/10.1016/j.fertnstert.2016.07.1076.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Domingo JL, Nadal M. Human exposure to per- and polyfluoroalkyl substances (PFAS) through drinking water: a review of the recent scientific literature. Environ Res. 2019;177:108648. https://doi.org/10.1016/j.envres.2019.108648.

CAS  Article  PubMed  Google Scholar 

Sunderland EM, Hu XC, Dassuncao C, Tokranov AK, Wagner CC, Allen JG. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J Exposure Sci Environ Epidemiol. 2019;29:131–47. https://doi.org/10.1038/s41370-018-0094-1.

CAS  Article  Google Scholar 

U.S. Environmental Protection Agency. Chemistry Dashboard. https://comptox.epa.gov/dashboard/ (accessed 2021-03-09).

Williams AJ, Grulke CM, Edwards J, McEachran AD, Mansouri K, Baker NC, et al. The CompTox chemistry dashboard: a community data resource for environmental chemistry. J Cheminform. 2017;9:61. https://doi.org/10.1186/s13321-017-0247-6.

Article  PubMed  PubMed Central  Google Scholar 

Highly fluorinated substances. https://www.kemi.se/en/chemical-substances-and-materials/highly-fluorinated-substances (accessed 2020-12-08).

Giesy JP, Kannan K. Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol. 2001;35:1339–42. https://doi.org/10.1021/es001834k.

CAS  Article  PubMed  Google Scholar 

Martin JW, Mabury SA, Solomon KR, Muir DCG. Bioconcentration and tissue distribution of perfluorinated acids in rainbow trout (Oncorhynchus Mykiss). Environ Toxicol Chem. 2003;22:196–204. https://doi.org/10.1002/etc.5620220126.

Gaballah S, Swank A, Sobus JR, Howey XM, Schmid J, Catron T, et al. Evaluation of developmental toxicity, developmental neurotoxicity, and tissue dose in Zebrafish exposed to GenX and other PFAS. Environ Health Perspect. 128, 047005. https://doi.org/10.1289/EHP5843.

Ahrens L, Bundschuh M. Fate and effects of poly- and perfluoroalkyl substances in the aquatic environment: a review. Environ Toxicol Chem. 2014;33:1921–9. https://doi.org/10.1002/etc.2663.

CAS  Article  PubMed  Google Scholar 

Fenton SE, Ducatman A, Boobis A, DeWitt JC, Lau C, Ng C, et al. Per- and polyfluoroalkyl substance toxicity and human health review: current state of knowledge and strategies for informing future research. Environ Toxicol Chem. 2021;40:606–30. https://doi.org/10.1002/etc.4890.

CAS  Article  PubMed  Google Scholar 

Grandjean P, Andersen EW, Budtz-Jørgensen E, Nielsen F, Mølbak K, Weihe P, et al. Serum vaccine antibody concentrations in children exposed to perfluorinated compounds. JAMA. 2012;307:391–7. https://doi.org/10.1001/jama.2011.2034.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Grandjean P, Heilmann C, Weihe P, Nielsen F, Mogensen UB, Budtz-Jørgensen E. Serum vaccine antibody concentrations in adolescents exposed to perfluorinated compounds. Environ Health Perspect. 2017;125:077018 https://doi.org/10.1289/EHP275

Article  PubMed  PubMed Central  Google Scholar 

C8 Science Panel Website. http://www.c8sciencepanel.org/prob_link.html (accessed 2020-12-08).

Yamaguchi M, Arisawa K, Uemura H, Katsuura‐Kamano S, Takami H, Sawachika F, et al. Consumption of seafood, serum liver enzymes, and blood levels of PFOS and PFOA in the Japanese population. J Occup Health. 2013;55:184–94. https://doi.org/10.1539/joh.12-0264-OA.

CAS  Article  PubMed  Google Scholar 

Massoud O, Charlton M. Nonalcoholic fatty liver disease/nonalcoholic steatohepatitis and hepatocellular carcinoma. Clin Liver Dis. 2018;22:201–11. https://doi.org/10.1016/j.cld.2017.08.014.

Article  PubMed  Google Scholar 

Šabović I, Cosci I, De Toni L, Ferramosca A, Stornaiuolo M, Di Nisio A, et al. Perfluoro-octanoic acid impairs sperm motility through the alteration of plasma membrane. J Endocrinol Invest. 2020;43:641–52. https://doi.org/10.1007/s40618-019-01152-0.

Article  PubMed  Google Scholar 

Lam J, Koustas E, Sutton P, Johnson PI, Atchley DS, Sen S, et al. The navigation guide - evidence-based medicine meets environmental health: integration of animal and human evidence for PFOA effects on fetal growth. Environ Health Perspect. 2014;122:1040–51. https://doi.org/10.1289/ehp.1307923.

Article  PubMed  PubMed Central  Google Scholar 

Chen F, Yin S, Kelly BC, Liu W. Isomer-specific transplacental transfer of perfluoroalkyl acids: results from a survey of paired maternal, cord sera, and placentas. Environ Sci Technol. 2017;51:5756–63. https://doi.org/10.1021/acs.est.7b00268.

CAS  Article  PubMed  Google Scholar 

Morello-Frosch R, Cushing LJ, Jesdale BM, Schwartz JM, Guo W, Guo T, et al. Environmental chemicals in an urban population of pregnant women and their newborns from San Francisco. Environ Sci Technol. 2016;50:12464–72. https://doi.org/10.1021/acs.est.6b03492.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gao K, Zhuang T, Liu X, Fu J, Zhang J, Fu J, et al. Prenatal exposure to per- and polyfluoroalkyl substances (PFASs) and association between the placental transfer efficiencies and dissociation constant of serum proteins–PFAS complexes. Environ Sci Technol. 2019;53:6529–38. https://doi.org/10.1021/acs.est.9b00715.

CAS  Article  PubMed  Google Scholar 

Starling AP, Adgate JL, Hamman RF, Kechris K, Calafat AM, Ye X, et al. Perfluoroalkyl substances during pregnancy and offspring weight and adiposity at birth: examining mediation by maternal fasting glucose in the healthy start study. Environ Health Perspect. 125:067016. https://doi.org/10.1289/EHP641.

Spratlen MJ, Perera FP, Lederman SA, Robinson M, Kannan K, Herbstman J, et al. The Association Between Perfluoroalkyl Substances and Lipids in Cord Blood. J Clin Endocrinol Metab. 2020;105 https://doi.org/10.1210/clinem/dgz024.

Chen Q, Zhang X, Zhao Y, Lu W, Wu J, Zhao S, et al. Prenatal exposure to perfluorobutanesulfonic acid and childhood adiposity: a prospective birth cohort study in Shanghai, China. Chemosphere. 2019;226:17–23. https://doi.org/10.1016/j.chemosphere.2019.03.095.

CAS  Article  PubMed  Google Scholar 

Høyer BB, Ramlau-Hansen CH, Obel C, Pedersen HS, Hernik A, Ogniev V, et al. Pregnancy serum concentrations of perfluorinated alkyl substances and offspring behaviour and motor development at age 5–9 years – a prospective study. Environ Health. 2015;14:2. https://doi.org/10.1186/1476-069X-14-2.

Article  PubMed  PubMed Central  Google Scholar 

Cahill TM, Cousins I, Mackay D. Development and application of a generalized physiologically based pharmacokinetic model for multiple environmental contaminants. Environ Toxicol Chem. 2003;22:26–34. https://doi.org/10.1002/etc.5620220104.

CAS  Article  PubMed  Google Scholar 

Verner M-A, Loccisano AE, Morken N-H, Yoon M, Wu H, McDougall R.et al. Associations of Perfluoroalkyl Substances (PFAS) with Lower Birth Weight: An Evaluation of Potential Confounding by Glomerular Filtration Rate Using a Physiologically Based Pharmacokinetic Model (PBPK. Environmental Health Perspectives. 2015;123:1317–24. https://doi.org/10.1289/ehp.1408837.

Forns J, Verner M-A, Iszatt N, Nowack N, Bach CC, Vrijheid M, et al. Early life exposure to perfluoroalkyl substances (PFAS) and ADHD: a meta-analysis of nine European population-based studies. Environ Health Perspect. 128 057002. https://doi.org/10.1289/EHP5444.

Verner M-A, Ngueta G, Jensen ET, Fromme H, Völkel W, Nygaard UC.et al. A Simple Pharmacokinetic Model of Prenatal and Postnatal Exposure to Perfluoroalkyl Substances (PFASs. Environ. Sci. Technol. 2016;50:978–86. https://doi.org/10.1021/acs.est.5b04399.

Mamsen LS, Björvang RD, Mucs D, Vinnars M-T, Papadogiannakis N, Lindh CH, et al. Concentrations of perfluoroalkyl substances (PFASs) in human embryonic and fetal organs from first, second, and third trimester pregnancies. Environ Int. 2019;124:482–92. https://doi.org/10.1016/j.envint.2019.01.010.

CAS  Article  PubMed  Google Scholar 

Mamsen LS, Jönsson BAG, Lindh CH, Olesen RH, Larsen A, Ernst E, et al. Concentration of perfluorinated compounds and cotinine in human foetal organs, placenta, and maternal plasma. Sci Total Environ. 2017;596–597:97–105. https://doi.org/10.1016/j.scitotenv.2017.04.058.

Article  PubMed  Google Scholar 

Pérez F, Nadal M, Navarro-Ortega A, Fàbrega F, Domingo JL, Barceló D, et al. Accumulation of perfluoroalkyl substances in human tissues. Environ Int. 2013;59:354–62. https://doi.org/10.1016/j.envint.2013.06.004.

Article  PubMed  Google Scholar 

Takaku T, Nagahori H, Sogame Y, Takagi T. Quantitative structure–activity relationship model for the fetal–maternal blood concentration ratio of chemicals in humans. Biol Pharm Bull. 2015;38:930–4. https://doi.org/10.1248/bpb.b14-00883.

CAS  Article  PubMed  Google Scholar 

Lancz K, Murínová Ľ, Patayová H, Drobná B, Wimmerová S, Šovčíková E, et al. Ratio of cord to maternal serum PCB concentrations in relation to their congener-specific physicochemical properties. Int J Hyg Environ Health. 2015;218:91–98. https://doi.org/10.1016/j.ijheh.2014.08.003.

留言 (0)

沒有登入
gif