Blockade of USP14 potentiates type I interferon signaling and radiation-induced antitumor immunity via preventing IRF3 deubiquitination

D.E. Citrin, Recent developments in radiotherapy. N. Engl. J. Med. 377, 1065–1075 (2017). https://doi.org/10.1056/NEJMra1608986

CAS  Article  PubMed  Google Scholar 

E.B. Golden, D. Frances, I. Pellicciotta, S. Demaria, M. Helen Barcellos-Hoff, S.C. Formenti, Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. OncoImmunology 3, e28518 (2014). https://doi.org/10.4161/onci.28518

Article  PubMed  PubMed Central  Google Scholar 

C. Grassberger, S.G. Ellsworth, M.Q. Wilks, F.K. Keane, J.S. Loeffler, Assessing the interactions between radiotherapy and antitumour immunity. Nat. Rev. Clin. Oncol. 16, 729–745 (2019). https://doi.org/10.1038/s41571-019-0238-9

Article  PubMed  Google Scholar 

C. Twyman-Saint Victor, A.J. Rech, A. Maity, R. Rengan, K.E. Pauken, E. Stelekati, J.L. Benci, B. Xu, H. Dada, P.M. Odorizzi, R.S. Herati, K.D. Mansfield, D. Patsch, R.K. Amaravadi, L.M. Schuchter, H. Ishwaran, R. Mick, D.A. Pryma, X. Xu, et al., Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520, 373–377 (2015). https://doi.org/10.1038/nature14292

CAS  Article  PubMed  Google Scholar 

L. Apetoh, F. Ghiringhelli, A. Tesniere, M. Obeid, C. Ortiz, A. Criollo, G. Mignot, M.C. Maiuri, E. Ullrich, P. Saulnier, H. Yang, S. Amigorena, B. Ryffel, F.J. Barrat, P. Saftig, F. Levi, R. Lidereau, C. Nogues, J.-P. Mira, et al., Toll-like receptor 4–dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 13, 1050–1059 (2007). https://doi.org/10.1038/nm1622

CAS  Article  PubMed  Google Scholar 

F. Klug, H. Prakash, P.E. Huber, T. Seibel, N. Bender, N. Halama, C. Pfirschke, R.H. Voss, C. Timke, L. Umansky, K. Klapproth, K. Schäkel, N. Garbi, D. Jäger, J. Weitz, H. Schmitz-Winnenthal, G.J. Hämmerling, P. Beckhove, Low-dose irradiation programs macrophage differentiation to an iNOS(+)M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 24, 589–602 (2013). https://doi.org/10.1016/j.ccr.2013.09.014

CAS  Article  PubMed  Google Scholar 

L. Deng, H. Liang, M. Xu, X. Yang, B. Burnette, A. Arina, X.-D. Li, H. Mauceri, M. Beckett, T. Darga, X. Huang, T.F. Gajewski, Z.J. Chen, Y.-X. Fu, R.R. Weichselbaum, STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41, 843–852 (2014). https://doi.org/10.1016/j.immuni.2014.10.019

CAS  Article  PubMed  PubMed Central  Google Scholar 

B.C. Burnette, H. Liang, Y. Lee, L. Chlewicki, N.N. Khodarev, R.R. Weichselbaum, Y.-X. Fu, S.L. Auh, The efficacy of radiotherapy relies upon induction of type I interferon–dependent innate and adaptive immunity. Cancer Res. 71, 2488–2496 (2011). https://doi.org/10.1158/0008-5472.CAN-10-2820

CAS  Article  PubMed  PubMed Central  Google Scholar 

S.R. Paludan, G. Andrew, Bowie Imm. Sens. DNA Immun. 38, 870–880 (2013). https://doi.org/10.1016/j.immuni.2013.05.004

CAS  Article  Google Scholar 

Y. Hou, H. Liang, E. Rao, W. Zheng, X. Huang, L. Deng, Y. Zhang, X. Yu, M. Xu, H. Mauceri, A. Arina, R.R. Weichselbaum, Y.-X. Fu, Non-canonical NF-kappaB antagonizes STING sensor-mediated DNA sensing in radiotherapy. Immunity 49, 490–503.e494 (2018). https://doi.org/10.1016/j.immuni.2018.07.008

CAS  Article  PubMed  PubMed Central  Google Scholar 

C. Han, Z. Liu, Y. Zhang, A. Shen, C. Dong, A. Zhang, C. Moore, Z. Ren, C. Lu, X. Cao, C.-L. Zhang, J. Qiao, Y.-X. Fu, Tumor cells suppress radiation-induced immunity by hijacking caspase 9 signaling. Nat. Immunol. 21, 546–554 (2020). https://doi.org/10.1038/s41590-020-0641-5

CAS  Article  PubMed  Google Scholar 

X. Yue, Y. Zuo, H. Ke, J. Luo, L. Lou, W. Qin, Y. Wang, Z. Liu, D. Chen, H. Sun, W. Zheng, C. Zhu, R. Wang, G. Wen, J. Du, B. Zhou, X. Bu, Identification of 4-arylidene curcumin analogues as novel proteasome inhibitors for potential anticancer agents targeting 19S regulatory particle associated deubiquitinase. Biochem. Pharmacol. 137, 29–50 (2017). https://doi.org/10.1016/j.bcp.2017.04.032

CAS  Article  PubMed  Google Scholar 

H. Hu, S.-C. Sun, Ubiquitin signaling in immune responses. Cell Res. 26, 457–483 (2016). https://doi.org/10.1038/cr.2016.40

CAS  Article  PubMed  PubMed Central  Google Scholar 

H. Sun, Q. Zhang, Y.-Y. Jing, M. Zhang, H.-Y. Wang, Z. Cai, T. Liuyu, Z.-D. Zhang, T.-C. Xiong, Y. Wu, Q.-Y. Zhu, J. Yao, H.-B. Shu, D. Lin, B. Zhong, USP13 negatively regulates antiviral responses by deubiquitinating STING. Nat. Commun. 8, 15534 (2017). https://doi.org/10.1038/ncomms15534

CAS  Article  PubMed  PubMed Central  Google Scholar 

J. Zhang, Y. Chen, X. Chen, W. Zhang, L. Zhao, L. Weng, H. Tian, Z. Wu, X. Tan, X. Ge, P. Wang, L. Fang, Deubiquitinase USP35 restrains STING-mediated interferon signaling in ovarian cancer. Cell Death Differ. 28, 139–155 (2021). https://doi.org/10.1038/s41418-020-0588-y

CAS  Article  PubMed  Google Scholar 

C. Bodda, L.S. Reinert, S. Fruhwürth, T. Richardo, C. Sun, B.-C. Zhang, M. Kalamvoki, A. Pohlmann, T.H. Mogensen, P. Bergström, L. Agholme, P. O’Hare, B. Sodeik, M. Gyrd-Hansen, H. Zetterberg, S.R. Paludan, HSV1 VP1-2 deubiquitinates STING to block type I interferon expression and promote brain infection. J. Exp. Med. 217, e20191422 (2020). https://doi.org/10.1084/jem.20191422

CAS  Article  PubMed  PubMed Central  Google Scholar 

T. Tsuchida, J. Zou, T. Saitoh, H. Kumar, T. Abe, Y. Matsuura, T. Kawai, S. Akira, The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity 33, 765–776 (2010). https://doi.org/10.1016/j.immuni.2010.10.013

CAS  Article  PubMed  Google Scholar 

J. Zhang, M.-M. Hu, Y.-Y. Wang, H.-B. Shu, TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination*. J. Biol. Chem. 287, 28646–28655 (2012). https://doi.org/10.1074/jbc.M112.362608

CAS  Article  PubMed  PubMed Central  Google Scholar 

M. Zhang, M.-X. Zhang, Q. Zhang, G.-F. Zhu, L. Yuan, D.-E. Zhang, Q. Zhu, J. Yao, H.-B. Shu, B. Zhong, USP18 recruits USP20 to promote innate antiviral response through deubiquitinating STING/MITA. Cell Res. 26, 1302–1319 (2016). https://doi.org/10.1038/cr.2016.125

CAS  Article  PubMed  PubMed Central  Google Scholar 

W.-W. Luo, S. Li, C. Li, H. Lian, Q. Yang, B. Zhong, H.-B. Shu, iRhom2 is essential for innate immunity to DNA viruses by mediating trafficking and stability of the adaptor STING. Nat. Immunol. 17, 1057–1066 (2016). https://doi.org/10.1038/ni.3510

CAS  Article  PubMed  Google Scholar 

Y. Guo, F. Jiang, L. Kong, H. Wu, H. Zhang, X. Chen, J. Zhao, B. Cai, Y. Li, C. Ma, F. Yi, L. Zhang, B. Liu, Y. Zheng, L. Zhang, C. Gao, OTUD5 promotes innate antiviral and antitumor immunity through deubiquitinating and stabilizing STING. Cell. Mol. Immunol. 18, 1945–1955 (2021). https://doi.org/10.1038/s41423-020-00531-5

CAS  Article  PubMed  Google Scholar 

B. Zhong, L. Zhang, C. Lei, Y. Li, A.-P. Mao, Y. Yang, Y.-Y. Wang, X.-L. Zhang, H.-B. Shu, The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity 30, 397–407 (2009). https://doi.org/10.1016/j.immuni.2009.01.008

CAS  Article  PubMed  Google Scholar 

Y. Wang, Q. Lian, B. Yang, S. Yan, H. Zhou, L. He, G. Lin, Z. Lian, Z. Jiang, B. Sun, TRIM30α is a negative-feedback regulator of the intracellular DNA and DNA virus-triggered response by targeting STING. PLoS Pathog. 11, e1005012 (2015). https://doi.org/10.1371/journal.ppat.1005012

CAS  Article  PubMed  PubMed Central  Google Scholar 

M. Zhang, L. Wang, X. Zhao, K. Zhao, H. Meng, W. Zhao, C. Gao, TRAF-interacting protein (TRIP) negatively regulates IFN-β production and antiviral response by promoting proteasomal degradation of TANK-binding kinase 1. J. Exp. Med. 209, 1703–1711 (2012). https://doi.org/10.1084/jem.20120024

CAS  Article  PubMed  PubMed Central  Google Scholar 

J. Cui, Y. Li, L. Zhu, D. Liu, Z. Songyang, H.Y. Wang, R.-F. Wang, NLRP4 negatively regulates type I interferon signaling by targeting the kinase TBK1 for degradation via the ubiquitin ligase DTX4. Nat. Immunol. 13, 387–395 (2012). https://doi.org/10.1038/ni.2239

CAS  Article  PubMed  PubMed Central  Google Scholar 

Z. Yu, H. Song, M. Jia, J. Zhang, W. Wang, Q. Li, L. Zhang, W. Zhao, USP1–UAF1 deubiquitinase complex stabilizes TBK1 and enhances antiviral responses. J. Exp. Med. 214, 3553–3563 (2017). https://doi.org/10.1084/jem.20170180

CAS  Article  PubMed  PubMed Central  Google Scholar 

M. Lin, Z. Zhao, Z. Yang, Q. Meng, P. Tan, W. Xie, Y. Qin, R.-F. Wang, J. Cui, USP38 inhibits type I interferon signaling by editing TBK1 ubiquitination through NLRP4 signalosome. Mol. Cell 64, 267–281 (2016). https://doi.org/10.1016/j.molcel.2016.08.029

CAS  Article  PubMed  Google Scholar 

H. Li, Z. Zhao, J. Ling, L. Pan, X. Zhao, H. Zhu, J. Yu, B. Xie, J. Shen, W. Chen, USP14 promotes K63-linked RIG-I deubiquitination and suppresses antiviral immune responses. Eur. J. Immunol. 49, 42–53 (2019). https://doi.org/10.1002/eji.201847603

CAS  Article  PubMed  Google Scholar 

H. Li, J. Quan, X. Zhao, J. Ling, W. Chen, USP14 negatively regulates RIG-I-mediated IL-6 and TNF-α production by inhibiting NF-κB activation. Mol. Immunol. 130, 69–76 (2021). https://doi.org/10.1016/j.molimm.2020.12.022

CAS  Article  PubMed  Google Scholar 

D. Wang, L. Fang, P. Li, L. Sun, J. Fan, Q. Zhang, R. Luo, X. Liu, K. Li, H. Chen, Z. Chen, S. Xiao, The leader proteinase of foot-and-mouth disease virus negatively regulates the type I interferon pathway by acting as a viral Deubiquitinase. J. Virol. 85, 3758–3766 (2011). https://doi.org/10.1128/JVI.02589-10

CAS  Article  PubMed  PubMed Central  Google Scholar 

L. Huang, Y. Zhang, J. Zheng, N. Ni, Q. Qin, X. Huang, Y. Huang, Grouper ubiquitin-specific protease 14 promotes iridovirus replication through negatively regulating interferon response. Fish Shellfish Immunol. 105, 253–262 (2020). https://doi.org/10.1016/j.fsi.2020.07.015

CAS 

留言 (0)

沒有登入
gif