Brain Microtubule Electrical Oscillations-Empirical Mode Decomposition Analysis

Amo C, de Santiago L, Barea R, López-Dorado A, Boquete L (2017) Analysis of gamma-band activity from human EEG using empirical mode decomposition. Sensors 17:989

PubMed Central  Article  Google Scholar 

Amos LA (2004) Microtubule structure and its stabilisation. Org Biomol Chem 2:2153–2160

CAS  PubMed  Article  Google Scholar 

Amos LA, Baker TS (1979) Three-dimensional image of tubulin in zinc-induced sheets, reconstructed from electron micrograph. Intl J Biol Macromol 1:146–156

CAS  Article  Google Scholar 

Amos LA, Lowe J (1999) How Taxol® stabilises microtubule structure. Chem Biol 3:R65–R69

Article  Google Scholar 

Atanasov AT (2014) Calculation of vibration modes of mechanical waves on microtubules presented like strings and bars. Am J Modern Phys 3(1):1–11

Google Scholar 

Ávila J, Soares H, Fanarraga ML, Zabala JC (2008) Isolation of microtubules and microtubule proteins. Curr Protoc Cell Biol 39:3.29.1-3.29.28

Article  Google Scholar 

Bagheri A, Kourehli S (2013) Damage detection of structures under earthquake excitation using discrete wavelet analysis. Asian J Civil Engineer (BHRC) 14(2):289–304

Google Scholar 

Baker NA, Sept D, Simpson J, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98(19):10037–10041

CAS  PubMed  PubMed Central  Article  Google Scholar 

Başar E, Başar-Eroglu C, Karakaş S, Schürmann M (2001) Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int J Psychophysiol 39(2–3):241–282

PubMed  Article  Google Scholar 

Battista BM, Knapp CC, McGee T, Goebel V (2007) Application of the empirical mode decomposition and Hilbert-Huang transform to seismic reflection data. Geophysics 72(2):H29–H37

Article  Google Scholar 

Bendat JS, Piersol AG (2010) The Hilbert transform: random data: analysis and measurement procedures, Wiley Series in Probability and Statistics, 4th edn. John Wiley & Sons Inc, NJ

Book  Google Scholar 

Biswas A (2018) Scale–location specific soil spatial variability: a comparison of continuous wavelet transform and Hilbert-Huang transform. CATENA 160:24–31

Article  Google Scholar 

Bonacina J, Carabajal MPA, Cantero MR, Cantiello HF (2020) The bacterial tubulin homolog FtsZ forms 2D-sheets that sustain electrical oscillations. Biophys J 118(3:1):126A

Article  Google Scholar 

Box GEP, Cox DR (1964) An analysis of transformations. J Royal Stat Soc B (methodological) 26:211–252

Article  Google Scholar 

Bray D (1992) Cell movements: from molecules to motility, 1st edn. Garland Science, New York

Google Scholar 

Cantero MR, Perez PL, Smoler M, Villa Etchegoyen C, Cantiello HF (2016) Electrical oscillations in two-dimensional microtubular structures. Sci Rep 6:27143

CAS  PubMed Central  Article  Google Scholar 

Cantero MR, Villa Etchegoyen C, Perez PL, Scarinci N, Cantiello HF (2018) Bundles of brain microtubules generate electrical oscillations. Sci Rep 8(1):11899

PubMed  PubMed Central  Article  Google Scholar 

Cantero MR, Perez PL, Scarinci N, Cantiello HF (2019) Two-dimensional brain microtubule structures behave as memristive devices. Sci Rep 9:12398

PubMed  PubMed Central  Article  Google Scholar 

Chrétien D, Fuller SD, Karsenti E (1995) Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates. J Cell Biol 129(5):1311–1328

PubMed  Article  Google Scholar 

Cifra M, Pokornỳ J, Havelka D, Kučera O (2010) Electric field generated by axial longitudinal vibration modes of microtubule. BioSystems 100:122–131

CAS  PubMed  Article  Google Scholar 

Cifra M, Pokorný J, Jelínek F, Kučera O (2009) Vibrations of electrically polar structures in biosystems give rise to electromagnetic field: theories and experiments. PIERS Procedings, Moscow, Russia, August 18–21

Conde C, Cáceres A (2009) Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci 10:319–332

CAS  PubMed  Article  Google Scholar 

Contreras D, Steriade M (1996) Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm. J Physiol 490(1):159–179

CAS  PubMed  PubMed Central  Article  Google Scholar 

Contreras D, Destexhe A, Sejnowski TJ, Steriade M (1997) Spatiotemporal patterns of spindle oscillations in cortex and thalamus. J Neurosci 17(3):1179–1196

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cox R, Rüber T, Staresina BP, Fell J (2019) Heterogeneous profiles of coupled sleep oscillations in human hippocampus. Neuroimage 202:116178

PubMed  Article  Google Scholar 

Daubechies I (1992) Ten lectures on wavelets (CBMS-NSF regional conference series in applied mathematics). Society for Industrial and Applied Mathematics, Pennsylvania, SIAM

Google Scholar 

Daubechies I, Lu J, Wu HT (2011) Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl Comp Harm Anal 30:243–261

Article  Google Scholar 

David F, Courtiol E, Buonviso N, Fourcaud-Trocmé N (2015) Competing mechanisms of gamma and beta oscillations in the olfactory bulb based on multimodal inhibition of mitral cells over a respiratory cycle. eNeuro 2(6):1–24

Article  Google Scholar 

Demiralp T, Başar-Eroglu C, Başar E (1996) Distributed gamma band responses in the brain studied in cortex, reticular formation, hippocampus and cerebellum. Int J Neurosci 84(1–4):1–13

CAS  PubMed  Article  Google Scholar 

Desai A, Mitchison TJ (1997) Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 13:83–117

CAS  PubMed  Article  Google Scholar 

Díaz JF, Valpuesta JM, Chacón P, Diakun G, Andreu JM (1998) Changes in microtubule protofilament number induced by taxol binding to an easily accessible site. J Biol Chem 273(50):33803–33810

PubMed  Article  Google Scholar 

Downing KH, Jontes J (1992) Projection map of tubulin in zinc-induced sheets at 4Å resolution. J Struct Biol 109:152–159

CAS  PubMed  Article  Google Scholar 

Dugué GP, Brunel N, Hakim V, Schwartz E, Chat M, Lévesque M, Courtemanche R, Léna C, Dieudonné S (2009) Electrical coupling mediates tunable low-frequency oscillations and resonance in the cerebellar Golgi cell network. Neuron 61:126–139

PubMed  Article  Google Scholar 

Dustin P (1978) Microtubules. Springer Verlag, Berlin

Book  Google Scholar 

Eagleman SL, Chander D, Reynolds C, Ouellette NT, MacIver MV (2019) Nonlinear dynamics captures brain states at different levels of consciousness in patients anesthetized with propofol. PLoS ONE 14(10):e0223921

CAS  PubMed  PubMed Central  Article  Google Scholar 

Farge M (1992) Wavelet transforms and their applications to turbulence. Annu Rev Fluid Mech 24:395–457

Article  Google Scholar 

Fatimah B, Singh P, Singhal A, Pachori RB (2020) Detection of apnea events from ECG segments using Fourier decomposition method. Biomed Signal Process Control 61:102005

Article  Google Scholar 

Ferenz NP, Paul R, Fagerstrom C, Mogilner A, Wadsworth P (2009) Dynein antagonizes Eg5 by crosslinking and sliding antiparallel microtubules. Curr Biol 19(21):1833–1838

CAS  PubMed  PubMed Central  Article  Google Scholar 

Freedman H, Huzil JT, Luchko T, Ludueña RF, Tuszynski JA (2009) Identification and characterization of an intermediate taxol binding site within microtubule nanopores and a mechanism for tubulin isotype binding selectivity. J Chem Inf Model 49(2):424–436

CAS  PubMed  Article  Google Scholar 

Freedman H, Rezania V, Priel A, Carpenter E, Noskov SY, Tuszynski JA (2010) Model of ionic currents through microtubule nanopores and the lumen. Phys Rev E Stat Nonlin Soft Matter Phys 81(5 Pt 1):051912

PubMed  Article  Google Scholar 

Gilles J (2013) Empirical wavelet transform. IEEE Trans Signal Process 61(16):3999–4010

Article  Google Scholar 

Graps A (1995) An introduction to wavelets. IEEE Comput Sci Eng 2(2):50–61

Article  Google Scholar 

Grill SW, Kruse K, Jülicher F (2005) Theory of mitotic spindle oscillations. Phys Rev Lett 94(10):108104

PubMed  Article  Google Scholar 

Gutierrez BC, Pita Almenar MR, Martínez LJ, Siñeriz Louis M, Albarracín VH, Cantero MR, Cantiello HF (2021) Honeybee brain oscillations are generated by microtubules: the concept of a brain central oscillator. Front Mol Neurosci 14:727025

PubMed  PubMed Central  Article  Google Scholar 

Hahn MA, Heib D, Schabus M, Hoedlmoser K, Helfrich RF (2020) Slow oscillation-spindle coupling predicts enhanced memory formation from childhood to adolescence. Elife 9:e53730

PubMed  PubMed Central  Article  Google Scholar 

Hameroff S, Penrose R (1996) Orchestrated reduction of quantum coherence in brain microtubules: a model for consciousness. Math Comp Simul 40:453–480

Article  Google Scholar 

Hameroff S, Penrose R (2014) Consciousness in the universe: a review of the ‘Orch OR’ theory. Phys Life Rev 11(1):39–78

PubMed 

留言 (0)

沒有登入
gif