T cell Repertoire Profiling and the Mechanism by which HLA-B27 Causes Ankylosing Spondylitis

Dean LE, Jones GT, MacDonald AG, Downham C, Sturrock RD, Macfarlane GJ. Global prevalence of ankylosing spondylitis. Rheumatology (Oxford). 2014;53(4):650–7.

Article  Google Scholar 

Healey EL, Haywood KL, Jordan KP, Garratt A, Packham JC. Impact of ankylosing spondylitis on work in patients across the UK. Scand J Rheumatol. 2011;40(1):34–40.

CAS  PubMed  Article  Google Scholar 

Bakland G, Gran JT, Nossent JC. Increased mortality in ankylosing spondylitis is related to disease activity. Ann Rheum Dis. 2011;70(11):1921–5.

PubMed  Article  Google Scholar 

Brown MA, Laval SH, Brophy S, Calin A. Recurrence risk modelling of the genetic susceptibility to ankylosing spondylitis. Ann Rheum Dis. 2000;59(11):883–6.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Brown MA, Kennedy LG, MacGregor AJ, Darke C, Duncan E, Shatford JL, et al. Susceptibility to ankylosing spondylitis in twins: the role of genes, HLA, and the environment. Arthritis Rheum. 1997;40(10):1823–8.

CAS  PubMed  Article  Google Scholar 

Pedersen OB, Svendsen AJ, Ejstrup L, Skytthe A, Harris JR, Junker P. Ankylosing spondylitis in Danish and Norwegian twins: occurrence and the relative importance of genetic vs. environmental effectors in disease causation. Scand J Rheumatol. 2008;37(2):120–6.

CAS  PubMed  Article  Google Scholar 

Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A, et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet. 2007;39(11):1329–37.

CAS  PubMed  Article  Google Scholar 

Cortes A, Pulit SL, Leo PJ, Pointon JJ, Robinson PC, Weisman MH, et al. Major histocompatibility complex associations of ankylosing spondylitis are complex and involve further epistasis with ERAP1. Nat Commun. 2015;21(6):7146.

Article  Google Scholar 

Ellinghaus D, Jostins L, Spain SL, Cortes A, Bethune J, Han B, et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat Genet. 2016;48(5):510–8.

CAS  PubMed  PubMed Central  Article  Google Scholar 

International Genetics of Ankylosing Spondylitis Consortium, Cortes A, Hadler J, Pointon JP, Robinson PC, Karaderi T, et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet. 2013;45(7):730–8.

Article  Google Scholar 

Reveille J, Sims A, Maksymowych W, Ward M, Stone MPR, et al. Genomewide association study in ankylosing spondylitis identifies major non-MHC genetic determinants of disease susceptibility. Arthritis Rheum. 2008;Suppl 1:1186.

Google Scholar 

Li Z, Akar S, Yarkan H, Lee SK, Cetin P, Can G, et al. Genome-wide association study in Turkish and Iranian populations identify rare familial Mediterranean fever gene (MEFV) polymorphisms associated with ankylosing spondylitis. PLoS Genet. 2019;15(4):e1008038. Demonstrated strong association of variants of MEFV which is known to cause familial Mediterranean fever with AS, including HLA-B27 negative cases.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Brewerton DA, Cafrey M, Hart FD, James DCO, Nicholls A, Sturrock RD. Ankylosing spondylitis and HL-A 27 Lancet. 1973;904–907

Brown MA, Kenna T, Wordsworth BP. Genetics of ankylosing spondylitis-insights into pathogenesis. Nat Rev Rheumatol. 2016;12(2):81–91.

CAS  PubMed  Article  Google Scholar 

Genetic Analysis of Psoriasis C, the Wellcome Trust Case Control C, Strange A, Capon F, Spencer CC, Knight J, et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet. 2010;42(11):985–90.

Article  Google Scholar 

Kirino Y, Bertsias G, Ishigatsubo Y, Mizuki N, Tugal-Tutkun I, Seyahi E, et al. Genome-wide association analysis identifies new susceptibility loci for Behcet’s disease and epistasis between HLA-B*51 and ERAP1. Nat Genet. 2013;45(2):202–7.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lopez de Castro JA. How ERAP1 and ERAP2 shape the peptidomes of disease-associated MHC-I proteins. Front Immunol. 2018;9:2463.

PubMed  PubMed Central  Article  Google Scholar 

Tito RY, Cypers H, Joossens M, Varkas G, Van Praet L, Glorieus E, et al. Brief report: dialister as a microbial marker of disease activity in spondyloarthritis. Arthritis Rheumatol. 2017;69(1):114–21.

CAS  PubMed  Article  Google Scholar 

Wen C, Zheng Z, Shao T, Liu L, Xie Z, Le Chatelier E, et al. Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis. Genome Biol. 2017;18(1):142.

PubMed  PubMed Central  Article  Google Scholar 

Yin J, Sternes PR, Wang M, Song J, Morrison M, Li T, et al. Shotgun metagenomics reveals an enrichment of potentially cross-reactive bacterial epitopes in ankylosing spondylitis patients, as well as the effects of TNFi therapy upon microbiome composition. Ann Rheum Dis. 2020;79(1):132–40. Confirms in a non-European setting that the gut microbiome is different in AS patients, and that peptides derived from microbiome components are recognised by T-cells in HLA-B27 positive but not negative subjects.

CAS  PubMed  Article  Google Scholar 

Klingberg E, Magnusson MK, Strid H, Deminger A, Stahl A, Sundin J, et al. A distinct gut microbiota composition in patients with ankylosing spondylitis is associated with increased levels of fecal calprotectin. Arthritis Res Ther. 2019;21(1):248.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Asquith M, Sternes PR, Costello ME, Karstens L, Diamond S, Martin TM, et al. HLA alleles associated with risk of ankylosing spondylitis and rheumatoid arthritis influence the gut microbiome. Arthritis Rheumatol. 2019;71(10):1642–50. Demonstrates that HLA-B27 in healthy subjects influences the gut microbiome.

CAS  PubMed  Article  Google Scholar 

Costello ME, Elewaut D, Kenna TJ, Brown MA. Microbes, the gut and ankylosing spondylitis. Arthritis Res Ther. 2013;15(3):214.

PubMed  PubMed Central  Article  Google Scholar 

Robinson S, Panayi GS. Deficient control of in vitro Epstein-Barr virus infection in patients with ankylosing spondylitis. Ann Rheum Dis. 1986;45:974–7.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Winrow VR, Perry JD. Hyper-responsiveness to EBV in ankylosing spondylitis. Ann Rheum Dis. 1987;46(6):493–4.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Smith JA, Barnes MD, Hong D, DeLay ML, Inman RD, Colbert RA. Gene expression analysis of macrophages derived from ankylosing spondylitis patients reveals interferon-gamma dysregulation. Arthritis Rheum. 2008;58(6):1640–9.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Fert I, Cagnard N, Glatigny S, Letourneur F, Jacques S, Smith JA, et al. Reverse interferon signature is characteristic of antigen-presenting cells in human and rat spondyloarthritis. Arthritis Rheumatol. 2014;66(4):841–51.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ercolini AM, Miller SD. The role of infections in autoimmune disease. Clin Exp Immunol. 2009;155(1):1–15.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Huang H, Sikora MJ, Islam S, Chowdhury RR, Chien YH, Scriba TJ, et al. Select sequencing of clonally expanded CD8(+) T cells reveals limits to clonal expansion. Proc Natl Acad Sci U S A. 2019;116(18):8995. Provides evidence of clonal expansions of CD8 lymphocytes in AS patients.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ciccia F, Guggino G, Rizzo A, Alessandro R, Luchetti MM, Milling S, et al. Dysbiosis and zonulin upregulation alter gut epithelial and vascular barriers in patients with ankylosing spondylitis. Ann Rheum Dis. 2017;76(6):1123–32.

CAS  PubMed  Article  Google Scholar 

Smith MD, Gibson RA, Brooks PM. Abnormal bowel permeability in ankylosing spondylitis and rheumatoid arthritis. J Rheumatol. 1985;12:299–305.

CAS  PubMed  Google Scholar 

Martinez-Gonzalez O, Cantero-Hinojosa J, Paule-Sastre P, Gomez-Magan JC, Salcatierra-Rios D. Intestinal permeability in patients with ankylosing spondylitis and their healthy relatives. Br J Rheumatol. 1994;33:644–7.

CAS  PubMed  Article  Google Scholar 

Chen L, Fischer R, Peng Y, Reeves E, McHugh K, Ternette N, et al. Critical role of endoplasmic reticulum aminopeptidase 1 in determining the length and sequence of peptides bound and presented by HLA-B27. Arthritis & Rheumatology. 2014;66(2):284–94.

CAS  Article  Google Scholar 

Martin-Esteban A, Sanz-Bravo A, Guasp P, Barnea E, Admon A, de Castro JAL. Separate effects of the ankylosing spondylitis associated ERAP1 and ERAP2 aminopeptidases determine the influence of their combined phenotype on the HLA-B*27 peptidome. J Autoimmun. 2017;May:28–38.

Article  Google Scholar 

Chemin K, Gerstner C, Malmström V. Effector functions of CD4+ T cells at the site of local autoimmune inflammation-lessons from rheumatoid arthritis. Front Immunol. 2019;10:353.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Pugliese A. Autoreactive T cells in type 1 diabetes. J Clin Invest. 2017;127(8):2881–91.

PubMed  PubMed Central  Article  Google Scholar 

Alves Sousa AP, Johnson KR, Ohayon J, Zhu J, Muraro PA, Jacobson S. Comprehensive analysis of TCR-β repertoire in patients with neurological immune-mediated disorders. Sci Rep. 2019;9(1):344.

PubMed  PubMed Central  Article  Google Scholar 

Chang CM, Hsu YW, Wong HS, Wei JC, Liu X, Liao HT, et al. Characterization of T-Cell receptor repertoire in patients with rheumatoid arthritis receiving biologic therapies. Dis Markers. 2019;2019:2364943.

留言 (0)

沒有登入
gif