CSF1R as a Therapeutic Target in Bone Diseases: Obvious but Not so Simple

Wiktor-Jedrzejczak W, Bartocci A, Ferrante AW Jr, Ahmed-Ansari A, Sell KW, Pollard JW, Stanley ER. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci U S A. 1990;87(12):4828–32. https://doi.org/10.1073/pnas.87.12.4828.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H, et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature. 1990;345(6274):442–4. https://doi.org/10.1038/345442a0.

CAS  Article  PubMed  Google Scholar 

Van Wesenbeeck L, Odgren PR, MacKay CA, D’Angelo M, Safadi FF, Popoff SN, et al. The osteopetrotic mutation toothless (tl) is a loss-of-function frameshift mutation in the rat Csf1 gene: evidence of a crucial role for CSF-1 in osteoclastogenesis and endochondral ossification. Proc Natl Acad Sci U S A. 2002;99(22):14303–8. https://doi.org/10.1073/pnas.202332999.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lajeunesse D, Busque L, Menard P, Brunette MG, Bonny Y. Demonstration of an osteoblast defect in two cases of human malignant osteopetrosis. Correction of the phenotype after bone marrow transplant. J Clin Invest. 1996;98(8):1835–42. https://doi.org/10.1172/JCI118984.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Sobacchi C, Schulz A, Coxon FP, Villa A, Helfrich MH. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol. 2013;9(9):522–36. https://doi.org/10.1038/nrendo.2013.137.

CAS  Article  PubMed  Google Scholar 

Cecchini MG, Hofstetter W, Halasy J, Wetterwald A, Felix R. Role of CSF-1 in bone and bone marrow development. Mol Reprod Dev. 1997;46(1):75–83. https://doi.org/10.1002/(SICI)1098-2795(199701)46:1<75::AID-MRD12>3.0.CO;2-2.

CAS  Article  PubMed  Google Scholar 

Albagha OM, Visconti MR, Alonso N, Langston AL, Cundy T, Dargie R, et al. Genome-wide association study identifies variants at CSF1, OPTN and TNFRSF11A as genetic risk factors for Paget’s disease of bone. Nat Genet. 2010;42(6):520–4. https://doi.org/10.1038/ng.562.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Begg SK, Bertoncello I. The hematopoietic deficiencies in osteopetrotic (op/op) mice are not permanent, but progressively correct with age. Exp Hematol. 1993;21(4):493–5.

CAS  PubMed  Google Scholar 

Nilsson SK, Lieschke GJ, Garcia-Wijnen CC, Williams B, Tzelepis D, Hodgson G, Grail D, Dunn AR, Bertoncello I. Granulocyte-macrophage colony-stimulating factor is not responsible for the correction of hematopoietic deficiencies in the maturing op/op mouse. Blood. 1995;86(1):66–72.

CAS  Article  Google Scholar 

Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S, Sylvestre V, Stanley ER. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood. 2002;99(1):111–20.

CAS  Article  Google Scholar 

• Pridans C, Raper A, David GM, Alves J, Sauter KA, Lefevre L, et al. Pleiotropic impacts of macrophage and microglial deficiency on development in rats with targeted mutation of the Csf1r locus. JImmunol. 2018;201(9):2683-99. The first description of the Csf1r null mutation in rats, highlighting differences to more widely studied mouse models.

Wei S, Nandi S, Chitu V, Yeung YG, Yu W, Huang M, Williams LT, Lin H, Stanley ER. Functional overlap but differential expression of CSF-1 and IL-34 in their CSF-1 receptor-mediated regulation of myeloid cells. J Leukoc Biol. 2010;88(3):495–505. https://doi.org/10.1189/jlb.1209822.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hume DA, Caruso M, Keshvari S, Patkar OL, Sehgal A, Bush SJ, Summers KM, Pridans C, Irvine KM. The mononuclear phagocyte system of the rat. J Immunol. 2021;206(10):2251–63. https://doi.org/10.4049/jimmunol.2100136.

CAS  Article  PubMed  Google Scholar 

Fischer V, Haffner-Luntzer M. Interaction between bone and immune cells: implications for postmenopausal osteoporosis. Semin Cell Dev Biol. 2022;123:14–21. https://doi.org/10.1016/j.semcdb.2021.05.014.

Article  PubMed  Google Scholar 

Sims NA, Martin TJ. Coupling signals between the osteoclast and osteoblast: how are messages transmitted between these temporary visitors to the bone surface? Front Endocrinol (Lausanne). 2015;6:41. 10.3389/fendo.2015.00041.

• Sims NA, Martin TJ. Osteoclasts provide coupling signals to osteoblast lineage cells through multiple mechanisms. Annu Rev Physiol. 2020;82:507-29. https://doi.org/10.1146/annurev-physiol-021119-034425. Recent comprehensive review of osteoclast-osteoblast coupling mechanisms.

Reid IR, Billington EO. Drug therapy for osteoporosis in older adults. Lancet. 2022;399(10329):1080–92. https://doi.org/10.1016/S0140-6736(21)02646-5.

CAS  Article  PubMed  Google Scholar 

Takahata M, Shimizu T, Yamada S, Yamamoto T, Hasegawa T, Fujita R, Kobayashi H, Endo T, Koike Y, Amizuka N, Todoh M, Okumura JI, Kajino T, Iwasaki N. Bone biopsy findings in patients receiving long-term bisphosphonate therapy for glucocorticoid-induced osteoporosis. J Bone Miner Metab. 2022;40:613–22. https://doi.org/10.1007/s00774-022-01323-9.

CAS  Article  PubMed  Google Scholar 

Mbalaviele G, Novack DV, Schett G, Teitelbaum SL. Inflammatory osteolysis: a conspiracy against bone. J Clin Invest. 2017;127(6):2030–9. https://doi.org/10.1172/JCI93356.

Article  PubMed  PubMed Central  Google Scholar 

Balic A, Garcia-Morales C, Vervelde L, Gilhooley H, Sherman A, Garceau V, Gutowska MW, Burt DW, Kaiser P, Hume DA, Sang HM. Visualisation of chicken macrophages using transgenic reporter genes: insights into the development of the avian macrophage lineage. Development. 2014;141(16):3255–65. https://doi.org/10.1242/dev.105593.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Garceau V, Balic A, Garcia-Morales C, Sauter KA, McGrew MJ, Smith J, et al. The development and maintenance of the mononuclear phagocyte system of the chick is controlled by signals from the macrophage colony-stimulating factor receptor. BMC Biol. 2015;13:12. https://doi.org/10.1186/s12915-015-0121-9.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Irvine KM, Caruso M, Cestari MF, Davis GM, Keshvari S, Sehgal A, Pridans C, Hume DA. Analysis of the impact of CSF-1 administration in adult rats using a novel Csf1r-mApple reporter gene. J Leukoc Biol. 2020;107(2):221–35. https://doi.org/10.1002/JLB.MA0519-149R.

CAS  Article  PubMed  Google Scholar 

Hawley CA, Rojo R, Raper A, Sauter KA, Lisowski ZM, Grabert K, Bain CC, Davis GM, Louwe PA, Ostrowski MC, Hume DA, Pridans C, Jenkins SJ. Csf1r-mApple transgene expression and ligand binding in vivo reveal dynamics of CSF1R expression within the mononuclear phagocyte system. J Immunol. 2018;200(6):2209–23. https://doi.org/10.4049/jimmunol.1701488.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Sasmono RT, Oceandy D, Pollard JW, Tong W, Pavli P, Wainwright BJ, Ostrowski MC, Himes SR, Hume DA. A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood. 2003;101(3):1155–63. https://doi.org/10.1182/blood-2002-02-0569.

CAS  Article  PubMed  Google Scholar 

Sauter KA, Pridans C, Sehgal A, Bain CC, Scott C, Moffat L, Rojo R, Stutchfield BM, Davies CL, Donaldson DS, Renault K, McColl BW, Mowat AM, Serrels A, Frame MC, Mabbott NA, Hume DA. The MacBlue binary transgene (csf1r-gal4VP16/UAS-ECFP) provides a novel marker for visualisation of subsets of monocytes, macrophages and dendritic cells and responsiveness to CSF1 administration. PLoS ONE. 2014;9(8):e105429. https://doi.org/10.1371/journal.pone.0105429.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Rojo R, Pridans C, Langlais D, Hume DA. Transcriptional mechanisms that control expression of the macrophage colony-stimulating factor receptor locus. Clin Sci (Lond). 2017;131(16):2161–82. https://doi.org/10.1042/CS20170238.

CAS  Article  PubMed  Google Scholar 

Lichanska AM, Browne CM, Henkel GW, Murphy KM, Ostrowski MC, McKercher SR, et al. Differentiation of the mononuclear phagocyte system during mouse embryogenesis: the role of transcription factor PU.1. Blood. 1999;94(1):127–38.

CAS  Article  Google Scholar 

Rae F, Woods K, Sasmono T, Campanale N, Taylor D, Ovchinnikov DA, Grimmond SM, Hume DA, Ricardo SD, Little MH. Characterisation and trophic functions of murine embryonic macrophages based upon the use of a Csf1r-EGFP transgene reporter. Dev Biol. 2007;308(1):232–46. https://doi.org/10.1016/j.ydbio.2007.05.027.

CAS  Article  PubMed  Google Scholar 

Summers KM, Bush SJ, Hume DA. Network analysis of transcriptomic diversity amongst resident tissue macrophages and dendritic cells in the mouse mononuclear phagocyte system. PLoS Biol. 2020;18(10):e3000859. https://doi.org/10.1371/journal.pbio.3000859.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Summers KM, Hume DA. Identification of the macrophage-specific promoter signature in FANTOM5 mouse embryo developmental time course data. J Leukoc Biol. 2017;102(4):1081–92. https://doi.org/10.1189/jlb.1A0417-150RR.

CAS  Article  PubMed  Google Scholar 

Nestorowa S, Hamey FK, Pijuan Sala B, Diamanti E, Shepherd M, Laurenti E, Wilson NK, Kent DG, Göttgens B. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood. 2016;128(8):e20–31. https://doi.org/10.1182/blood-2016-05-716480.

CAS  Article  PubMed  PubMed Central  Google Scholar 

• Grabert K, Sehgal A, Irvine KM, Wollscheid-Lengeling E, Ozdemir DD, Stables J, et al. A transgenic line that reports CSF1R protein expression provides a definitive marker for the mouse mononuclear phagocyte system. J Immunol. 2020;205(11):3154-66. https://doi.org/10.4049/jimmunol.2000835. Analysis of a knock-in transgenic line demonstrates conclusively that CSF1R is not expressed outside of the mononuclear phagocyte lineage, a key to interpreting effects of therapeutic interventions.

Tagoh H, Himes R, Clarke D, Leenen PJ, Riggs AD, Hume D, et al. Transcription factor complex formation and chromatin fine structure alterations at the murine c-fms (CSF-1 receptor) locus during maturation of myeloid precursor cells. Genes Dev. 2002;16(13):1721–37. https://doi.org/10.1101/gad.222002.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Sasmono RT, Ehrnsperger A, Cronau SL, Ravasi T, Kandane R, Hickey MJ, Cook AD, Himes SR, Hamilton JA, Hume DA. Mouse neutrophilic granulocytes express mRNA encoding the macrophage colony-stimulating factor receptor (CSF-1R) as well as many other macrophage-specific transcripts and can transdifferentiate into macrophages in vitro in response to CSF-1. J Leukoc Biol. 2007;82(1):111–23. https://doi.org/10.1189/jlb.1206713.

CAS  Article  PubMed  Google Scholar 

Summers KM, Bush SJ, Wu C, Hume DA. Generation and network analysis of an RNA-seq transcriptional atlas for the rat. NAR Genom Bioinform. 2022;4(1):lqac017. https://doi.org/10.1093/nargab/lqac017.

Chitu V,

留言 (0)

沒有登入
gif