Targeting miR-21 in spinal cord injuries: a game-changer?

Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol. 2019;22(10):282. https://doi.org/10.3389/fneur.2019.00282 (PMID: 30967837; PMCID: PMC6439316).

Article  Google Scholar 

Anjum A, Yazid MD, Fauzi Daud M, Idris J, Ng AMH, Selvi Naicker A, Ismail OHR, Athi Kumar RK, Lokanathan Y. Spinal cord injury: pathophysiology, multimolecular interactions, and underlying recovery mechanisms. Int J Mol Sci. 2020;21(20):7533. https://doi.org/10.3390/ijms21207533 (PMID: 33066029; PMCID: PMC7589539).

CAS  Article  PubMed Central  Google Scholar 

Bao TH, Miao W, Han JH, Yin M, Yan Y, Wang WW, Zhu YH. Spontaneous running wheel improves cognitive functions of mouse associated with miRNA expressional alteration in hippocampus following traumatic brain injury. J Mol Neurosci. 2014;54(4):622–9. https://doi.org/10.1007/s12031-014-0344-1.

CAS  Article  PubMed  Google Scholar 

Bhalala OG, Pan L, Sahni V, McGuire TL, Gruner K, Tourtellotte WG, Kessler JA. microRNA-21 regulates astrocytic response following spinal cord injury. J Neurosci. 2012;32(50):17935–47. https://doi.org/10.1523/JNEUROSCI.3860-12.2012 (PMID: 23238710; PMCID: PMC3538038).

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chung HJ, Chung WH, Do SH, Lee JH, Kim HY. Up-regulation of Micrornas-21 and -223 in a Sprague-Dawley Rat model of traumatic spinal cord injury. Brain Sci. 2020;10(3):141. https://doi.org/10.3390/brainsci10030141 (PMID: 32121653; PMCID: PMC7139624).

CAS  Article  PubMed Central  Google Scholar 

Côté MP, Azzam GA, Lemay MA, Zhukareva V, Houlé JD. Activity-dependent increase in neurotrophic factors is associated with an enhanced modulation of spinal reflexes after spinal cord injury. J Neurotrauma. 2011;28:299–309. https://doi.org/10.1089/neu.2010.1594.

Article  PubMed  PubMed Central  Google Scholar 

D’Souza RF, Woodhead JST, Zeng N, Blenkiron C, Merry TL, Cameron-Smith D, Mitchell CJ. Circulatory exosomal miRNA following intense exercise is unrelated to muscle and plasma miRNA abundances. Am J Physiol Endocrinol Metab. 2018;315(4):E723–33. https://doi.org/10.1152/ajpendo.00138.2018.

CAS  Article  PubMed  Google Scholar 

Donia SA, Allison DJ, Gammage KL, Ditor DS. The effects of acute aerobic exercise on mood and inflammation in individuals with multiple sclerosis and incomplete spinal cord injury. NeuroRehabilitation. 2019;45(1):117–24. https://doi.org/10.3233/NRE-192773.

Article  PubMed  Google Scholar 

Gao X, Li X, Qian C, Li F, Zhang Y, Dang L, Xiao X, Liu F, Li H, Zhang X. miR-21 functions oppositely in proliferation and differentiation of neural stem/precursor cells via regulating AKT and GSK-3β. Cell Mol Biol (noisy-Le-Grand). 2016;62(12):144–9. https://doi.org/10.14715/cmb/2016.62.12.24 (PMID: 28971796).

CAS  Article  Google Scholar 

Gaudet AD, Fonken LK, Watkins LR, Nelson RJ, Popovich PG. MicroRNAs: roles in regulating neuroinflammation. Neuroscientist. 2018;24(3):221–45. https://doi.org/10.1177/1073858417721150 (PMID: 28737113; PMCID: PMC8377730).

CAS  Article  PubMed  Google Scholar 

Ge XT, Lei P, Wang HC, Zhang AL, Han ZL, Chen X, Li SH, Jiang RC, Kang CS, Zhang JN. miR-21 improves the neurological outcome after traumatic brain injury in rats. Sci Rep. 2014;24(4):6718. https://doi.org/10.1038/srep06718 (PMID: 25342226; PMCID: PMC4208064).

Article  Google Scholar 

Hausott B, Klimaschewski L. Sprouty2—a novel therapeutic target in the nervous system? Mol Neurobiol. 2019;56:3897–903. https://doi.org/10.1007/s12035-018-1338-8.

CAS  Article  PubMed  Google Scholar 

Horak M, Zlamal F, Iliev R, Kucera J, Cacek J, Svobodova L, Hlavonova Z, Kalina T, Slaby O, Bienertova-Vasku J. Exercise-induced circulating microRNA changes in athletes in various training scenarios. PLoS ONE. 2018;13(1): e0191060. https://doi.org/10.1371/journal.pone.0191060.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hu J, Ni S, Cao Y, Zhang T, Wu T, Yin X, Lang Y, Lu H. The angiogenic effect of microRNA-21 targeting TIMP3 through the regulation of MMP2 and MMP9. PLoS ONE. 2016;11(2): e0149537. https://doi.org/10.1371/journal.pone.0149537 (PMID: 26872030; PMCID: PMC4752282).

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hu JZ, Huang JH, Zeng L, Wang G, Cao M, Lu HB. Anti-apoptotic effect of microRNA-21 after contusion spinal cord injury in rats. J Neurotrauma. 2013;30(15):1349–60. https://doi.org/10.1089/neu.2012.2748.PMID:23647386;PMCID:PMC3727528.

Article  PubMed  PubMed Central  Google Scholar 

Jenike AE, Halushka MK. miR-21: a non-specific biomarker of all maladies. Biomark Res. 2021;9(1):18. https://doi.org/10.1186/s40364-021-00272-1 (PMID: 33712063; PMCID: PMC7953557).

Article  PubMed  PubMed Central  Google Scholar 

Ji W, Jiao J, Cheng C, Shao J. MicroRNA-21 in the pathogenesis of traumatic brain injury. Neurochem Res. 2018;43(10):1863–8. https://doi.org/10.1007/s11064-018-2602-z.

CAS  Article  PubMed  Google Scholar 

Ji W, Jiang W, Li M, Li J, Li Z. miR-21 deficiency contributes to the impaired protective effects of obese rat mesenchymal stem cell-derived exosomes against spinal cord injury. Biochimie. 2019;167:171–8. https://doi.org/10.1016/j.biochi.2019.10.002 (Epub 2019 Oct 9 PMID: 31605737).

CAS  Article  PubMed  Google Scholar 

Jin LY, Li J, Wang KF, Xia WW, Zhu ZQ, Wang CR, Li XF, Liu HY. Blood-spinal cord barrier in spinal cord injury: a review. J Neurotrauma. 2021;38(9):1203–24. https://doi.org/10.1089/neu.2020.7413 (Epub 2021 Feb 16 PMID: 33292072).

Article  PubMed  Google Scholar 

Jung SY, Kim DY, Yune TY, Shin DH, Baek SB, Kim CJ. Treadmill exercise reduces spinal cord injury-induced apoptosis by activating the PI3K/Akt pathway in rats. Exp Ther Med. 2014;7(3):587–93. https://doi.org/10.3892/etm.2013.1451.

CAS  Article  PubMed  Google Scholar 

Kang J, Li Z, Zhi Z, Wang S, Xu G. miR-21 derived from the exosomes of MSCs regulates the death and differentiation of neurons in patients with spinal cord injury. Gene Ther. 2019;26(12):491–503. https://doi.org/10.1038/s41434-019-0101-8 (Epub 2019 Sep 30 PMID: 31570818).

CAS  Article  PubMed  Google Scholar 

Kar AN, Lee SJ, Sahoo PK, Thames E, Yoo S, Houle JD, Twiss JL. MicroRNAs 21 and 199a-3p Regulate Axon Growth Potential through Modulation of Pten and mTor mRNAs. eNeuro. 2021;8(4). https://doi.org/10.1523/ENEURO.0155-21.2021. (PMID: 34326064; PMCID: PMC8362682).

Katoh H, Yokota K, Fehlings MG. Regeneration of spinal cord connectivity through stem cell transplantation and biomaterial scaffolds. Front Cell Neurosci. 2019;6(13):248. https://doi.org/10.3389/fncel.2019.00248 (PMID: 31244609; PMCID: PMC6563678).

Article  Google Scholar 

Kilian Y, Wehmeier UF, Wahl P, Mester J, Hilberg T, Sperlich B. Acute response of circulating vascular regulating MicroRNAs during and after high-intensity and high-volume cycling in children. Front Physiol. 2016;7:92. https://doi.org/10.3389/fphys.2016.00092.

Article  PubMed  PubMed Central  Google Scholar 

Kou X, Chen D, Chen N. The regulation of microRNAs in Alzheimer’s disease. Front Neurol. 2020;11:288. https://doi.org/10.3389/fneur.2020.00288.

Article  PubMed  PubMed Central  Google Scholar 

Leal-Filho MB. Spinal cord injury: from inflammation to glial scar. Surg Neurol Int. 2011;2:112. https://doi.org/10.4103/2152-7806.83732.

Article  PubMed  PubMed Central  Google Scholar 

Li M, Jiang WT, Li J, Ji WC. Exercise protects against spinal cord injury through miR-21-mediated suppression of PDCD4. Am J Transl Res. 2020;12(9):5708–18 (PMID: 33042450; PMCID: PMC7540147).

CAS  PubMed  PubMed Central  Google Scholar 

Liu G, Detloff MR, Miller KN, Santi L, Houlé JD. Exercise modulates microRNAs that affect the PTEN/mTOR pathway in rats after spinal cord injury. Exp Neurol. 2012;233:447–56. https://doi.org/10.1016/j.expneurol.2011.11.018.

CAS  Article  PubMed  Google Scholar 

Liu R, Wang W, Wang S, Xie W, Li H, Ning B. microRNA-21 regulates astrocytic reaction post-acute phase of spinal cord injury through modulating TGF-β signaling. Aging (albany NY). 2018;10(6):1474–88. https://doi.org/10.18632/aging.101484 (PMID: 29936495; PMCID: PMC6046223).

CAS  Article  Google Scholar 

Liu J, Zhang S, Huang Y, Sun L. miR-21 protects neonatal rats from hypoxic-ischemic brain damage by targeting CCL3. Apoptosis. 2020;25(3–4):275–89. https://doi.org/10.1007/s10495-020-01596-3 (PMID: 32306124).

CAS  Article  PubMed  Google Scholar 

Lv X, Liang J, Wang Z. miR-21–5p reduces apoptosis and inflammation in rats with spinal cord injury through PI3K/AKT pathway. Panminerva Med. 2020. https://doi.org/10.23736/S0031-0808.20.03974-9 (Epub ahead of print. PMID: 32720795).

Article  PubMed  Google Scholar 

Ma S, Zhang A, Li X, Zhang S, Liu S, Zhao H, Wu S, Chen L, Ma C, Zhao H. miR-21-5p regulates extracellular matrix degradation and angiogenesis in TMJOA by targeting Spry1. Arthritis Res Ther. 2020;22(1):99. https://doi.org/10.1186/s13075-020-2145-y (PMID: 32357909; PMCID: PMC7195789).

CAS  Article  PubMed  PubMed Central  Google Scholar 

Malvandi AM, Shahba S, Mohammadipour A, Rastegar-Moghaddam SH, Abudayyak M. Cell and molecular toxicity of lanthanum nanoparticles: are there possible risks to humans? Nanotoxicology. 2021;15(7):951–72. https://doi.org/10.1080/17435390.2021.1940340.

Article  PubMed  Google Scholar 

Martinez B, Peplow PV. MicroRNAs as diagnostic markers and therapeutic targets for traumatic brain injury. Neural Regen Res. 2017;12(11):1749–61. https://doi.org/10.4103/1673-5374.219025.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Mendell LM, Munson JB, Arvanian VL. Neurotrophins and synaptic plasticity in the mammalian spinal cord. J Physiol. 2001;533:91–7. https://doi.org/10.1111/j.1469-7793.2001.0091b.x.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Mohammadipour A, Abudayyak M. Hippocampal toxicity of metal base nanoparticles. Is there a relationship between nanoparticles and psychiatric disorders? Rev Environ Health. 2021. https://doi.org/10.1515/reveh-2021-0006.

Article  PubMed  Google Scholar 

Mohammadipour A, Haghir H, Ebrahimzadeh BA. A link between nanoparticles and Parkinson’s disease. Which nanoparticles are most harmful? Rev Environ Health

留言 (0)

沒有登入
gif