Assessment of PABPN1 nuclear inclusions on a large cohort of patients and in a human xenograft model of oculopharyngeal muscular dystrophy

Abu-Baker A, Laganiere S, Fan X, Laganiere J, Brais B, Rouleau GA (2005) Cytoplasmic targeting of mutant Poly(A)-binding protein nuclear 1 suppresses protein aggregation and toxicity in oculopharyngeal muscular dystrophy. Traffic 6:766–779. https://doi.org/10.1111/j.1600-0854.2005.00315.x

CAS  Article  PubMed  Google Scholar 

Abu-Baker A, Messaed C, Laganiere J, Gaspar C, Brais B, Rouleau GA (2003) Involvement of the ubiquitin-proteasome pathway and molecular chaperones in oculopharyngeal muscular dystrophy. Hum Mol Genet 12:2609–2623. https://doi.org/10.1093/hmg/ddg293

CAS  Article  PubMed  Google Scholar 

Agarwal PK, Mansfield DC, Mechan D, Al-Shahi Salman R, Davenport RJ, Connor M et al (2012) Delayed diagnosis of oculopharyngeal muscular dystrophy in Scotland. Br J Ophthalmol 96:281–283. https://doi.org/10.1136/bjo.2010.200378

Article  PubMed  Google Scholar 

Anvar SY, AC’t Hoen P, Venema A, Van Der Sluijs B, Van Engelen B, Snoeck M et al (2011) Deregulation of the ubiquitin-proteasome system is the predominant molecular pathology in OPMD animal models and patients. Skeletal muscle 1:1

Article  Google Scholar 

Apponi LH, Corbett AH, Pavlath GK (2013) Control of mRNA stability contributes to low levels of nuclear poly(A) binding protein 1 (PABPN1) in skeletal muscle. Skelet Muscle 3:23. https://doi.org/10.1186/2044-5040-3-23

CAS  Article  PubMed  PubMed Central  Google Scholar 

Argov Z, Gliko-Kabir I, Brais B, Caraco Y, Megiddo D (2016) Intravenous trehalose improves dysphagia and muscle function in oculopharyngeal muscular dystrophy (OPMD): preliminary results of 24 weeks open label phase 2 trial (I4.007). Neurology 86:I4.007

Google Scholar 

Ayyadevara S, Balasubramaniam M, Suri P, Mackintosh SG, Tackett AJ, Sullivan DH et al (2016) Proteins that accumulate with age in human skeletal-muscle aggregates contribute to declines in muscle mass and function in Caenorhabditis elegans. Aging (Albany NY) 8:3486–3496. https://doi.org/10.18632/aging.101141

CAS  Article  Google Scholar 

Banerjee A, Apponi LH, Pavlath GK, Corbett AH (2013) PABPN1: molecular function and muscle disease. FEBS J 280:4230–4250. https://doi.org/10.1111/febs.12294

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bao YP, Sarkar S, Uyama E, Rubinsztein DC (2004) Congo red, doxycycline, and HSP70 overexpression reduce aggregate formation and cell death in cell models of oculopharyngeal muscular dystrophy. J Med Genet 41:47–51. https://doi.org/10.1136/jmg.2003.014548

CAS  Article  PubMed  PubMed Central  Google Scholar 

Becher MW, Kotzuk JA, Davis LE, Bear DG (2000) Intranuclear inclusions in oculopharyngeal muscular dystrophy contain poly(A) binding protein 2. Ann Neurol 48:812–815

CAS  Article  Google Scholar 

Beltran Valls MR, Wilkinson DJ, Narici MV, Smith K, Phillips BE, Caporossi D et al (2015) Protein carbonylation and heat shock proteins in human skeletal muscle: relationships to age and Sarcopenia. J Gerontol: Series A 70:174–181. https://doi.org/10.1093/gerona/glu007

CAS  Article  Google Scholar 

Bengoechea R, Tapia O, Casafont I, Berciano J, Lafarga M, Berciano MT (2012) Nuclear speckles are involved in nuclear aggregation of PABPN1 and in the pathophysiology of oculopharyngeal muscular dystrophy. Neurobiol Dis 46:118–129. https://doi.org/10.1016/j.nbd.2011.12.052

CAS  Article  PubMed  Google Scholar 

Bensalah M, Muraine L, Boulinguiez A, Giordani L, Albert V, Ythier V et al (2022) A negative feedback loop between fibroadipogenic progenitors and muscle fibres involving endothelin promotes human muscle fibrosis. J Cachexia, Sarcopenia Muscle n/a. https://doi.org/10.1002/jcsm.12974

Article  Google Scholar 

Blanc RS, Richard S (2017) Regenerating muscle with arginine methylation. Transcription 8:175–178. https://doi.org/10.1080/21541264.2017.1291083

CAS  Article  PubMed  PubMed Central  Google Scholar 

Blumen SC, Brais B, Korczyn AD, Medinsky S, Chapman J, Asherov A et al (1999) Homozygotes for oculopharyngeal muscular dystrophy have a severe form of the disease. Ann Neurol 46:115–118

CAS  Article  Google Scholar 

Blumen SC, Sadeh M, Korczyn AD, Rouche A, Nisipeanu P, Asherov A et al (1996) Intranuclear inclusions in oculopharyngeal muscular dystrophy among Bukhara Jews. Neurology 46:1324–1324. https://doi.org/10.1212/WNL.46.5.1324

CAS  Article  PubMed  Google Scholar 

Bontemps C, Cannistrà C, Michel P, Butler-Browne GS, Fonzi L, Barbet JP (2002) The persistence of ontogenic characteristics in the adult masseter muscle. Bull Group Int Rech Sci Stomatol Odontol 44:61–67

CAS  PubMed  Google Scholar 

Bouchard J-P, Gagné F, Tomé FMS, Brunet D (1989) Nuclear inclusions in oculopharyngeal muscular dystrophy in Quebec. Can J Neurol Sci 16:446–450. https://doi.org/10.1017/S0317167100029565

CAS  Article  PubMed  Google Scholar 

Brais B, Bouchard JP, Xie YG, Rochefort DL, Chrétien N, Tomé FM et al (1998) Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nat Genet 18:164–167. https://doi.org/10.1038/ng0298-164

CAS  Article  PubMed  Google Scholar 

Calado A, Tomé FM, Brais B, Rouleau GA, Kühn U, Wahle E et al (2000) Nuclear inclusions in oculopharyngeal muscular dystrophy consist of poly(A) binding protein 2 aggregates which sequester poly(A) RNA. Hum Mol Genet 9:2321–2328

CAS  Article  Google Scholar 

Chartier A, Klein P, Pierson S, Barbezier N, Gidaro T, Casas F et al (2015) Mitochondrial dysfunction reveals the role of mRNA poly(A) tail regulation in oculopharyngeal muscular dystrophy pathogenesis. PLoS Genet 11:e1005092. https://doi.org/10.1371/journal.pgen.1005092

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chen Z, Sequeiros J, Tang B, Jiang H (2018) Genetic modifiers of age-at-onset in polyglutamine diseases. Ageing Res Rev 48:99–108. https://doi.org/10.1016/j.arr.2018.10.004

CAS  Article  PubMed  Google Scholar 

Choi S, Jeong H-J, Kim H, Choi D, Cho S-C, Seong JK et al (2019) Skeletal muscle-specific Prmt1 deletion causes muscle atrophy via deregulation of the PRMT6-FOXO3 axis. Autophagy. https://doi.org/10.1080/15548627.2019.1569931

Article  PubMed  PubMed Central  Google Scholar 

Cobley JN, Sakellariou GK, Murray S, Waldron S, Gregson W, Burniston JG et al (2013) Lifelong endurance training attenuates age-related genotoxic stress in human skeletal muscle. Longevity & Healthspan 2:11. https://doi.org/10.1186/2046-2395-2-11

Article  Google Scholar 

Coquet M, Vital C, Julien J (1990) Presence of inclusion body myositis-like filaments in oculopharyngeal muscular dystrophy. Ultrastructural study of 10 cases. Neuropathol Appl Neurobiol 16:393–400

CAS  Article  Google Scholar 

Cruz-Aguilar M, Guerrero-de Ferran C, Tovilla-Canales JL, Nava-Castañeda A, Zenteno JC (2017) Characterization of PABPN1 expansion mutations in a large cohort of Mexican patients with oculopharyngeal muscular dystrophy (OPMD). J Investig Med 65:705–708. https://doi.org/10.1136/jim-2016-000184

Article  PubMed  Google Scholar 

Davies JE, Wang L, Garcia-Oroz L, Cook LJ, Vacher C, O’Donovan DG et al (2005) Doxycycline attenuates and delays toxicity of the oculopharyngeal muscular dystrophy mutation in transgenic mice. Nat Med 11:672–677. https://doi.org/10.1038/nm1242

CAS  Article  PubMed  Google Scholar 

De Smet F, Saiz Rubio M, Hompes D, Naus E, De Baets G, Langenberg T et al (2016) Nuclear inclusion bodies of mutant and wild-type p53 in cancer: a hallmark of p53 inactivation and proteostasis remodelling by p53 aggregation. J Pathol. https://doi.org/10.1002/path.4872

Article  Google Scholar 

Duncan EJ, Cheetham ME, Chapple JP, van der Spuy J (2015) The role of HSP70 and its co-chaperones in protein misfolding, aggregation and disease. Subcell Biochem 78:243–273. https://doi.org/10.1007/978-3-319-11731-7_12

CAS  Article  PubMed  Google Scholar 

Fronz K, Otto S, Kölbel K, Kühn U, Friedrich H, Schierhorn A et al (2008) Promiscuous modification of the nuclear Poly(A)-binding protein by multiple protein-arginine methyltransferases does not affect the aggregation behavior. J Biol Chem 283:20408–20420. https://doi.org/10.1074/jbc.M802329200

CAS  Article  PubMed  Google Scholar 

Gidaro T, Negroni E, Perié S, Mirabella M, Lainé J, St Guily JL et al (2013) Atrophy, fibrosis, and increased PAX7-positive cells in pharyngeal muscles of oculopharyngeal muscular dystrophy patients. J Neuropathol Exp Neurol 72:234–243. https://doi.org/10.1097/NEN.0b013e3182854c07

CAS  Article  PubMed  Google Scholar 

Hill ME, Creed GA, McMullan TF, Tyers AG, Hilton-Jones D, Robinson DO et al (2001) Oculopharyngeal muscular dystrophy: phenotypic and genotypic studies in a UK population. Brain 124:522–526

CAS  Article  Google Scholar 

Jouan L, Rocheford D, Szuto A, Carney E, David K, Dion PA et al (2014) An 18 alanine repeat in a severe form of oculopharyngeal muscular dystrophy. Can J Neurol Sci 41:508–511

CAS  Article  Google Scholar 

Kehoe P, Krawczak M, Harper PS, Owen MJ, Jones AL (1999) Age of onset in Huntington disease: sex specific influence of apolipoprotein E genotype and normal CAG repeat length. J Med Genet 36:108–111

CAS  PubMed  PubMed Central  Google Scholar 

Kim E, Wu F, Lim D, Zeuthen C, Zhang Y, Allen J et al (2022) Fibroadipogenic progenitors regulate the basal proliferation of satellite cells and homeostasis of pharyngeal muscles via HGF secretion. Front Cell Dev Bio. https://doi.org/10.3389/fcell.2022.875209

Article  Google Scholar 

Klein P, Oloko M, Roth F, Montel V, Malerba A, Jarmin S et al (2016) Nuclear poly(A)-binding protein aggregates misplace a pre-mRNA outside of SC35 speckle causing its abnormal splicing. Nucleic Acids Res. https://doi.org/10.1093/nar/gkw703

Article  PubMed  PubMed Central  Google Scholar 

de Klerk E, Venema A, Anvar SY, Goeman JJ, Hu O, Trollet C et al (2012) Poly(A) binding protein nuclear 1 levels affect alternative polyadenylation. Nucleic Acids Res 40:9089–9101. https://doi.org/10.1093/nar/gks655

CAS  Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif