Gestational hypoxia in late pregnancy differentially programs subcortical brain maturation in male and female rat offspring

Tong W, Giussani DA. Preeclampsia link to gestational hypoxia. J Dev Orig Health Dis. 2019;10(3):322–33. https://doi.org/10.1017/S204017441900014X.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Almendros I, Martinez-Ros P, Farre N, Rubio-Zaragoza M, Torres M, Gutierrez-Bautista AJ, et al. Placental oxygen transfer reduces hypoxia-reoxygenation swings in fetal blood in a sheep model of gestational sleep apnea. J Appl Physiol (1985). 2019;127(3):745–52. https://doi.org/10.1152/japplphysiol.00303.2019.

CAS  Article  Google Scholar 

Jang EA, Longo LD, Goyal R. Antenatal maternal hypoxia: criterion for fetal growth restriction in rodents. Front Physiol. 2015;6:176. https://doi.org/10.3389/fphys.2015.00176.

Article  PubMed  PubMed Central  Google Scholar 

Ravishankar S, Bourjeily G, Lambert-Messerlian G, He M, De Paepe ME, Gundogan F. Evidence of placental hypoxia in maternal sleep disordered breathing. Pediatr Dev Pathol. 2015;18(5):380–6. https://doi.org/10.2350/15-06-1647-OA.1.

Article  PubMed  Google Scholar 

Nalivaeva NN, Turner AJ, Zhuravin IA. Role of prenatal hypoxia in brain development, cognitive functions, and neurodegeneration. Front Neurosci. 2018;12:825. https://doi.org/10.3389/fnins.2018.00825.

Article  PubMed  PubMed Central  Google Scholar 

Facco FL, Parker CB, Reddy UM, Silver RM, Koch MA, Louis JM, et al. Association between sleep-disordered breathing and hypertensive disorders of pregnancy and gestational diabetes mellitus. Obstet Gynecol. 2017;129(1):31–41. https://doi.org/10.1097/aog.0000000000001805.

Article  PubMed  PubMed Central  Google Scholar 

Pien GW, Pack AI, Jackson N, Maislin G, Macones GA, Schwab RJ. Risk factors for sleep-disordered breathing in pregnancy. Thorax. 2014;69(4):371–7. https://doi.org/10.1136/thoraxjnl-2012-202718.

Article  PubMed  Google Scholar 

Azevedo PN, Zanirati G, Venturin GT, Schu GG, Duran-Carabali LE, Odorcyk FK, et al. Long-term changes in metabolic brain network drive memory impairments in rats following neonatal hypoxia-ischemia. Neurobiol Learn Mem. 2020;171:1095–9564 (Electronic):107207; https://doi.org/10.1016/j.nlm.2020.107207.

Zhuravin IA, Dubrovskaya NM, Vasilev DS, Postnikova TY, Zaitsev AV. Prenatal hypoxia produces memory deficits associated with impairment of long-term synaptic plasticity in young rats. Neurobiol Learn Mem. 2019;164:1095–9564 (Electronic):107066; doi:https://doi.org/10.1016/j.nlm.2019.107066.

Yang SN, Huang CB, Yang CH, Lai MC, Chen WF, Wang CL, et al. Impaired SynGAP expression and long-term spatial learning and memory in hippocampal CA1 area from rats previously exposed to perinatal hypoxia-induced insults: beneficial effects of A68930. Neurosci Lett. 2004;371(1):73–8. https://doi.org/10.1016/j.neulet.2004.08.044.

CAS  Article  PubMed  Google Scholar 

Sailaja K, Gopinath G. Developing substantia nigra in human: a qualitative study. Dev Neurosci. 1994;16(1–2):44–52. https://doi.org/10.1159/000112087.

CAS  Article  PubMed  Google Scholar 

Aubert I, Brana C, Pellevoisin C, Giros B, Caille I, Carles D, et al. Molecular anatomy of the development of the human substantia nigra. J Comp Neurol. 1997;379(1):72–87. https://doi.org/10.1002/(sici)1096-9861(19970303)379:1<72::aid-cne5>3.0.co;2-f.

Almqvist PM, Åkesson E, Wahlberg LU, Pschera H, Seiger Å, Sundström E. First trimester development of the human nigrostriatal dopamine system. Exp Neurol. 1996;139(2):227–37. https://doi.org/10.1006/exnr.1996.0096.

CAS  Article  PubMed  Google Scholar 

Chevassus-au-Louis N, Baraban SC, Gaiarsa JL, Ben-Ari Y. Cortical malformations and epilepsy: new insights from animal models. Epilepsia. 1999;40(7):811–21. https://doi.org/10.1111/j.1528-1157.1999.tb00786.x.

CAS  Article  PubMed  Google Scholar 

Kim EH, Yum MS, Lee M, Kim EJ, Shim WH, Ko TS. A new rat model of epileptic spasms based on methylazoxymethanol-induced malformations of cortical development. Front Neurol. 2017;8:271. https://doi.org/10.3389/fneur.2017.00271.

Article  PubMed  PubMed Central  Google Scholar 

Rice D, Barone S Jr. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect. 2000;108(Suppl 3):511–33. https://doi.org/10.1289/ehp.00108s3511.

Article  PubMed  PubMed Central  Google Scholar 

Jung AB, Bennett JP Jr. Development of striatal dopaminergic function. I. Pre- and postnatal development of mRNAs and binding sites for striatal D1 (D1a) and D2 (D2a) receptors. Brain Res Dev Brain Res. 1996;94(2):109–20. https://doi.org/10.1016/0165-3806(96)00033-8.

CAS  Article  PubMed  Google Scholar 

Kortheuer KH. A study of development stages of the corpus striatum of the human brain. Los Angeles, California: University of Southern California; 1929.

Google Scholar 

Rickmann M, Wolff JR. Prenatal gliogenesis in the neopallium of the rat. Adv Anat Embryol Cell Biol. 1985;93(1):104. https://doi.org/10.1007/978-3-642-70081-1.

Article  Google Scholar 

Evans NP, Bellingham M, Robinson JE. Prenatal programming of neuroendocrine reproductive function. Theriogenology. 2016;86(1):340–8. https://doi.org/10.1016/j.theriogenology.2016.04.047.

CAS  Article  PubMed  Google Scholar 

Hodes GE, Epperson CN. Sex differences in vulnerability and resilience to stress across the life span. Biol Psychiatry. 2019;86(6):421–32. https://doi.org/10.1016/j.biopsych.2019.04.028.

Article  PubMed  PubMed Central  Google Scholar 

Perez-Cerezales S, Ramos-Ibeas P, Rizos D, Lonergan P, Bermejo-Alvarez P, Gutierrez-Adan A. Early sex-dependent differences in response to environmental stress. Reproduction. 2018;155(1):R39–51. https://doi.org/10.1530/REP-17-0466.

CAS  Article  PubMed  Google Scholar 

Howerton CL, Bale TL. Targeted placental deletion of OGT recapitulates the prenatal stress phenotype including hypothalamic mitochondrial dysfunction. Proc Natl Acad Sci U S A. 2014;111(26):9639–44. https://doi.org/10.1073/pnas.1401203111.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Mueller BR, Bale TL. Sex-specific programming of offspring emotionality after stress early in pregnancy. J Neurosci. 2008;28(36):9055–65. https://doi.org/10.1523/JNEUROSCI.1424-08.2008.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Carpentier PA, Haditsch U, Braun AE, Cantu AV, Moon HM, Price RO, et al. Stereotypical alterations in cortical patterning are associated with maternal illness-induced placental dysfunction. J Neurosci. 2013;33(43):16874–88. https://doi.org/10.1523/JNEUROSCI.4654-12.2013.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Braun AE, Carpentier PA, Babineau BA, Narayan AR, Kielhold ML, Moon HM, et al. “Females are not just ‘protected’ males”: sex-specific vulnerabilities in placenta and brain after prenatal immune disruption. eNeuro. 2019;6:6. https://doi.org/10.1523/ENEURO.0358-19.2019.

Article  Google Scholar 

Eriksson JG, Kajantie E, Osmond C, Thornburg K, Barker DJ. Boys live dangerously in the womb. Am J Hum Biol. 2010;22(3):330–5. https://doi.org/10.1002/ajhb.20995.

Article  PubMed  PubMed Central  Google Scholar 

Sandman CA, Glynn LM, Davis EP. Is there a viability-vulnerability tradeoff? Sex differences in fetal programming. J Psychosom Res. 2013;75(4):327–35. https://doi.org/10.1016/j.jpsychores.2013.07.009.

Article  PubMed  PubMed Central  Google Scholar 

Behlen JC, Lau CH, Li Y, Dhagat P, Stanley JA, Rodrigues Hoffman A, et al. Gestational exposure to ultrafine particles reveals sex- and dose-specific changes in offspring birth outcomes, placental morphology, and gene networks. Toxicol Sci. 2021;184(2):204–13. https://doi.org/10.1093/toxsci/kfab118.

CAS  Article  PubMed  Google Scholar 

Gumusoglu SB, Chilukuri ASS, Hing BWQ, Scroggins SM, Kundu S, Sandgren JA, et al. Altered offspring neurodevelopment in an arginine vasopressin preeclampsia model. Transl Psychiatry. 2021;11(1):79. https://doi.org/10.1038/s41398-021-01205-0.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Beery AK, Zucker I. Sex bias in neuroscience and biomedical research. Neurosci Biobehav Rev. 2011;35(3):565–72. https://doi.org/10.1016/j.neubiorev.2010.07.002.

Article  PubMed  Google Scholar 

Shansky RM, Woolley CS. Considering sex as a biological variable will be valuable for neuroscience research. J Neurosci. 2016;36(47):11817–22. https://doi.org/10.1523/JNEUROSCI.1390-16.2016.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Coiro P, Pollak DD. Sex and gender bias in the experimental neurosciences: the case of the maternal immune activation model. Transl Psychiatry. 2019;9:1–90. https://doi.org/10.1038/s41398-019-0423-8.

Article  Google Scholar 

Ciucci MR, Ahrens AM, Ma ST, Kane JR, Windham EB, Woodlee MT, et al. Reduction of dopamine synaptic activity: degradation of 50-kHz ultrasonic vocalization in rats. Behav Neurosci. 2009;123(2):328–36. https://doi.org/10.1037/a0014593.

Article  PubMed  PubMed Central  Google Scholar 

Ciucci MR, Ma ST, Fox C, Kane JR, Ramig LO, Schallert T. Qualitative changes in ultrasonic vocalization in rats after unilateral dopamine depletion or haloperidol: a preliminary study. Behav Brain Res. 2007;182(2):284–9. https://doi.org/10.1016/j.bbr.2007.02.020.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Grant LM, Kelm-Nelson CA, Hilby BL, Blue KV, Paul Rajamanickam ES, Pultorak JD, et al. Evidence for early and progressive ultrasonic vocalization and oromotor deficits in a PINK1 gene knockout rat model of Parkinson’s disease. J Neurosci Res. 2015;93(11):1713–27. https://doi.org/10.1002/jnr.23625.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Olszynski KH, Polowy R, Wardak AD, Grymanowska AW, Filipkowski RK. Increased vocalization of rats in response to ultrasonic playback as a sign of hypervigilance following fear conditioning. Brain Sci. 2021;11:8. https://doi.org/10.3390/brainsci11080970.

Article  Google Scholar 

Panksepp J. Affective consciousness: core emotional feelings in animals and humans. Conscious Cogn. 2005;14(1):30–80. https://doi.org/10.1016/j.concog.2004.10.004.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif