Suprathreshold Auditory Measures for Detecting Early-Stage Noise-Induced Hearing Loss in Young Adults

  SFX Search  Buy Article Permissions and Reprints Abstract

Background Over 1 billion young adults are at risk for developing noise-induced hearing loss (NIHL) due to their habit of listening to music at loud levels. The gold standard for detecting NIHL is the audiometric notch around 3,000 to 6,000 Hz observed in pure tone audiogram. However, recent studies suggested that suprathreshold auditory measures might be more sensitive to detect early-stage NIHL in young adults.

Purpose The present study compared suprathreshold measures in individuals with high and low noise exposure backgrounds (NEBs). We hypothesized that individuals with high NEB would exhibit reduced performance on suprathreshold measures than those with low NEB.

Study sample An initial sample of 100 English-speaking healthy adults (18–35 years; females = 70) was obtained from five university classes. We identified 15 participants with the lowest NEB scores (10 females) and 15 participants with the highest NEB scores (10 females). We selected a sample of healthy young adults with no history of middle ear infection, and those in the low NEB group were selected with no history of impulse noise exposure.

Data collection and analysis The study included conventional audiometry, extended high-frequency audiometry, middle ear muscle reflex (MEMR) thresholds, distortion-product otoacoustic emissions (DPOAEs), QuickSIN, and suprathreshold auditory brainstem response (ABR) measures. We used independent sample t-tests, correlation coefficients, and linear mixed model analysis to compare the audiometric measures between the NEB groups.

Results The prevalence of audiometric notch was low in the study sample, even for individuals with high NEB. We found that: (1) individuals with high NEB revealed significantly reduced QuickSIN performance than those with low NEB; (2) music exposure via earphone revealed a significant association with QuickSIN; (3) individuals with high NEB revealed significantly reduced DPOAEs and ABR wave I amplitude compared with individuals with low NEB; (4) MEMR and ABR latency measures showed a modest association with NEB; and (5) audiometric thresholds across the frequency range did not show statistically significant association with NEB.

Conclusion Our results suggest that young adults with high NEB might exhibit impaired peripheral neural coding deficits leading to reduced speech-in-noise (SIN) performance despite clinically normal hearing thresholds. SIN measures might be more sensitive than audiometric notch for detecting early-stage NIHL in young adults.

Keywords noise - noise-induced hearing loss - cochlear synaptopathy - auditory evoked potentials - auditory brainstem response - speech-in-noise Disclaimer

Any mention of a product, service, or procedure in the Journal of the American Academy of Audiology does not constitute an endorsement of the product, service, or procedure by the American Academy of Audiology.

Publication History

Received: 06 July 2021

Accepted: 21 October 2021

Article published online:
04 October 2022

© 2022. American Academy of Audiology. This article is published by Thieme.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

留言 (0)

沒有登入
gif