Determinants of Low Bone Turnover in Type 2 Diabetes-the Role of PTH

Shu A, Yin M, Stein E et al (2012) Bone structure and turnover in type 2 diabetes mellitus. Osteoporos Int 23(2):635–641

CAS  PubMed  Article  Google Scholar 

Krakauer JC, Mckenna MJ, Buderer NF, Rao DS, Whitehouse FW, Parfitt AM (1995) Bone loss and bone turnover in diabetes. Diabetes 44(7):775–782

CAS  PubMed  Article  Google Scholar 

Manavalan J, Cremers S, Dempster D et al (2012) Circulating osteogenic precursor cells in type 2 diabetes mellitus. J Clin Endocrinol Metab 97(9):3240–3250

CAS  PubMed  PubMed Central  Article  Google Scholar 

Dobnig H, Piswanger-Sölkner JC, Roth M et al (2006) Type 2 diabetes mellitus in nursing home patients: effects on bone turnover, bone mass, and fracture risk. J Clin Endocrinol Metab 91(9):3355–3363

CAS  PubMed  Article  Google Scholar 

Kanazawa I, Yamaguchi T, Yamamoto M et al (2009) Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocrinol Metab 94(1):45–49

CAS  PubMed  Article  Google Scholar 

Farr JN, Drake MT, Amin S, Melton LJ III, McCready LK, Khosla S (2014) In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J Bone Miner Res 29(4):787–795

PubMed  Article  Google Scholar 

Starup-Linde J, Vestergaard P (2016) Biochemical bone turnover markers in diabetes mellitus—a systematic review. Bone 82:69–78

CAS  PubMed  Article  Google Scholar 

Starup-Linde J, Eriksen S, Lykkeboe S, Handberg A, Vestergaard P (2014) Biochemical markers of bone turnover in diabetes patients—a meta-analysis, and a methodological study on the effects of glucose on bone markers. Osteoporos Int 25(6):1697–1708

CAS  PubMed  Article  Google Scholar 

Yamamoto M, Yamauchi M, Sugimoto T (2013) Elevated sclerostin levels are associated with vertebral fractures in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 98(10):4030–4037

CAS  PubMed  Article  Google Scholar 

Ardawi M-SM, Akhbar DH, AlShaikh A et al (2013) Increased serum sclerostin and decreased serum IGF-1 are associated with vertebral fractures among postmenopausal women with type-2 diabetes. Bone 56(2):355–362

CAS  PubMed  Article  Google Scholar 

Hygum K, Starup-Linde J, Harsløf T, Vestergaard P, Langdahl BL (2017) Mechanisms in endocrinology: diabetes mellitus, a state of low bone turnover–a systematic review and meta-analysis. Eur J Endocrinol 176(3):R137–R157

CAS  PubMed  Article  Google Scholar 

Grontved A, Rimm EB, Willett WC, Andersen LB, Hu FB (2012) A prospective study of weight training and risk of type 2 diabetes mellitus in men. Arch Intern Med 172(17):1306–1312. https://doi.org/10.1001/archinternmed.2012.3138

Article  PubMed  Google Scholar 

García-Martín A, Rozas-Moreno P, Reyes-García R et al (2012) Circulating levels of sclerostin are increased in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 97(1):234–241

PubMed  Article  Google Scholar 

Vestergaard P, Rejnmark L, Mosekilde L (2005) Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia 48(7):1292–1299

CAS  PubMed  Article  Google Scholar 

Bonds DE, Larson JC, Schwartz AV et al (2006) Risk of fracture in women with type 2 diabetes: the women’s health initiative observational study. J Clin Endocrinol Metab 91(9):3404–3410. https://doi.org/10.1210/jc.2006-0614

CAS  Article  PubMed  Google Scholar 

Napoli N, Chandran M, Pierroz DD, Abrahamsen B, Schwartz AV, Ferrari SL (2017) Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol 13(4):208

CAS  PubMed  Article  Google Scholar 

Schwartz AV, Hillier TA, Sellmeyer DE et al (2002) Older women with diabetes have a higher risk of falls: a prospective study. Diabetes Care 25(10):1749–1754

PubMed  Article  Google Scholar 

Rubin MR, Patsch JM (2016) Assessment of bone turnover and bone quality in type 2 diabetic bone disease: current concepts and future directions. Bone research 4(1):1–9

Article  Google Scholar 

Eller-Vainicher C, Cairoli E, Grassi G et al (2020) Pathophysiology and management of type 2 diabetes mellitus bone fragility. J Diabet Res. https://doi.org/10.1155/2020/7608964

Article  Google Scholar 

Napoli N, Conte C, Eastell R et al (2020) Bone turnover markers do not predict fracture risk in type 2 diabetes. J Bone Miner Res 35(12):2363–2371

CAS  PubMed  Article  Google Scholar 

Yamamoto M, Yamaguchi T, Nawata K, Yamauchi M, Sugimoto T (2012) Decreased PTH levels accompanied by low bone formation are associated with vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab 97(4):1277–1284

CAS  PubMed  Article  Google Scholar 

Reyes-García R, Rozas-Moreno P, López-Gallardo G et al (2013) Serum levels of bone resorption markers are decreased in patients with type 2 diabetes. Acta Diabetol 50(1):47–52

PubMed  Article  Google Scholar 

McNair P, Christensen M, Madsbad S, Christiansen C, Transbøl I (1981) Hypoparathyroidism in diabetes mellitus. Eur J Endocrinol 96(1):81–86

CAS  Article  Google Scholar 

Kostov K (2019) Effects of magnesium deficiency on mechanisms of insulin resistance in Type 2 diabetes: focusing on the processes of insulin secretion and signaling. Int J Mol Sci 20(6):1351

CAS  PubMed Central  Article  Google Scholar 

Barbagallo M, Dominguez LJ (2015) Magnesium and type 2 diabetes. World J Diabet 6(10):1152

Article  Google Scholar 

Wittrant Y, Gorin Y, Woodruff K et al (2008) High d (+) glucose concentration inhibits RANKL-induced osteoclastogenesis. Bone 42(6):1122–1130

CAS  PubMed  PubMed Central  Article  Google Scholar 

Starup-Linde J, Lykkeboe S, Gregersen S et al (2016) Differences in biochemical bone markers by diabetes type and the impact of glucose. Bone 83:149–155

CAS  PubMed  Article  Google Scholar 

Adami S (2009) Bone health in diabetes: considerations for clinical management. Curr Med Res Opin 25(5):1057–1072

PubMed  Article  Google Scholar 

Gennari L, Merlotti D, Valenti R et al (2012) Circulating sclerostin levels and bone turnover in type 1 and type 2 diabetes. J Clin Endocrinol 97(5):1737–1744

CAS  Article  Google Scholar 

D’Erasmo E, Pisani D, Ragno A, Raejntroph N, Vecci E, Acca M (1999) Calcium homeostasis during oral glucose load in healthy women. Horm Metab Res 31(04):271–273

CAS  PubMed  Article  Google Scholar 

Thalassinos N, Hadjiyanni P, Tzanela M, Alevizaki C, Philokiprou D (1993) Calcium metabolism in diabetes mellitus: effect of improved blood glucose control. Diabet Med 10(4):341–344

CAS  PubMed  Article  Google Scholar 

Payne R (1998) Renal tubular reabsorption of phosphate (TmP/GFR): indications and interpretation. Ann Clin Biochem 35(2):201–206

CAS  PubMed  Article  Google Scholar 

Wein MN (2018) Parathyroid hormone signaling in osteocytes. JBMR plus 2(1):22–30

CAS  PubMed  Article  Google Scholar 

Jilka RL, Weinstein RS, Bellido T, Roberson P, Parfitt AM, Manolagas SC (1999) Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J Clin Investig 104(4):439–446

CAS  PubMed  PubMed Central  Article  Google Scholar 

Fan Y, Hanai J-i, Le PT et al (2017) Parathyroid hormone directs bone marrow mesenchymal cell fate. Cell Metab 25(3):661–672

CAS  PubMed  PubMed Central  Article  Google Scholar 

Balani DH, Ono N, Kronenberg HM (2017) Parathyroid hormone regulates fates of murine osteoblast precursors in vivo. J Clin Investig 127(9):3327–3338

PubMed  PubMed Central  Article  Google Scholar 

Nauck MA, Del Prato S, Meier JJ et al (2011) Dapagliflozin versus glipizide as add-on therapy in patients with type 2 diabetes who have inadequate glycemic control with metformin: a randomized, 52-week, double-blind, active-controlled noninferiority trial. Diabetes Care 34(9):2015–2022

CAS  PubMed  PubMed Central  Article  Google Scholar 

Baron R, Kneissel M (2013) WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 19(2):179

CAS  PubMed  Article  Google Scholar 

Brunkow ME, Gardner JC, Van Ness J et al (2001) Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot–containing protein. American J Human Genet 68(3):577–589

CAS  Article 

留言 (0)

沒有登入
gif