The role of proteoglycan form of DMP1 in cranial repair

desJardins-Park HE, Mascharak S, Longaker MT, Wan DC. Endogenous Mechanisms of Craniomaxillofacial Repair: Toward Novel Regenerative Therapies. Frontiers in oral health.2021; 2: 676258.

Behr B, Panetta NJ, Longaker MT, Quarto N. Different endogenous threshold levels of Fibroblast Growth Factor-ligands determine the healing potential of frontal and parietal bones. Bone. 2010;47(2):281–94.

CAS  PubMed  Article  Google Scholar 

Xue H, Tao D, Weng Y, Fan Q, Zhou S, Zhang R, et al. Glycosylation of dentin matrix protein 1 is critical for fracture healing via promoting chondrogenesis. Front Med. 2019;13(5):575–89.

PubMed  Article  Google Scholar 

Owston H, Giannoudis PV, Jones E. Do skeletal muscle MSCs in humans contribute to bone repair? A systematic review Injury. 2016;47(Suppl 6):S3-s15.

PubMed  Google Scholar 

Zieba J, Munivez E, Castellon A, Jiang MM, Dawson B, Ambrose CG, et al. Fracture Healing in Collagen-Related Preclinical Models of Osteogenesis Imperfecta. 2020;35(6):1132–48.

CAS  Google Scholar 

Camal Ruggieri IN, Cícero AM, Issa JP, MFeldman S. Bone fracture healing: perspectives according to molecular basis. Journal of bone and mineral metabolism.2020.

Lin X, Patil S, Gao YG, Qian A. The Bone Extracellular Matrix in Bone Formation and Regeneration. Frontiers Pharmacol. 2020;11:757.

CAS  Article  Google Scholar 

Paiva KBS, Granjeiro JM. Matrix Metalloproteinases in Bone Resorption, Remodeling, and Repair. Prog Mol Biol Transl Sci. 2017;148:203–303.

CAS  PubMed  Article  Google Scholar 

Kirby DJ, Young MF. Isolation, production, and analysis of small leucine-rich proteoglycans in bone. Methods Cell Biol. 2018;143:281–96.

CAS  PubMed  Article  Google Scholar 

Myren M, Kirby DJ, Noonan ML, Maeda A, Owens RT, Ricard-Blum S, et al. Biglycan potentially regulates angiogenesis during fracture repair by altering expression and function of endostatin. Matrix biology : journal of the International Society for Matrix Biology. 2016;52–54:141–50.

Article  Google Scholar 

Sun Y, Weng Y, Zhang C, Liu Y, Kang C, Liu Z, et al. Glycosylation of Dentin Matrix Protein 1 is critical for osteogenesis. Sci Rep. 2015;5:17518.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet. 2006;38(11):1310–5.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Qin C, Brunn JC, Cook RG, Orkiszewski RS, Malone JP, Veis A, et al. Evidence for the proteolytic processing of dentin matrix protein 1. Identification and characterization of processed fragments and cleavage sites. J Biol Chem. 2003;278(36):34700–8.

CAS  PubMed  Article  Google Scholar 

Xue H, Niu P, Liu Y, Sun Y. Glycosylation of DMP1 promotes bone reconstruction in long bone defects. Biochem Biophys Res Commun. 2020;526(4):1125–30.

CAS  PubMed  Article  Google Scholar 

Qin C, Huang B, Wygant JN, McIntyre BW, McDonald CH, Cook RG, et al. A chondroitin sulfate chain attached to the bone dentin matrix protein 1 NH2-terminal fragment. J Biol Chem. 2006;281(12):8034–40.

CAS  PubMed  Article  Google Scholar 

Cai M, Li J, Yue R, Wang Z, Sun Y. Glycosylation of DMP1 maintains cranial sutures in mice. Journal of oral rehabilitation.2020; 47 Suppl 1: 19–28.

Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein science : a publication of the Protein Society. 2019;28(11):1947–51.

CAS  Article  Google Scholar 

Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49(D1):D545-d551.

CAS  PubMed  Article  Google Scholar 

Safari B, Davaran S, Aghanejad A. Osteogenic potential of the growth factors and bioactive molecules in bone regeneration. International journal of biological macromolecules.2021.

Loi F, Córdova LA, Pajarinen J, Lin TH, Yao Z, Goodman SB. Inflammation, fracture and bone repair. Bone. 2016;86:119–30.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chen J, Sun T, You Y, Wu B, Wang X, Wu J. Proteoglycans and Glycosaminoglycans in Stem Cell Homeostasis and Bone Tissue Regeneration. Front Cell Dev Biol. 2021;9:760532.

PubMed  PubMed Central  Article  Google Scholar 

Kamiya N, Shigemasa K, Takagi M. Gene expression and immunohistochemical localization of decorin and biglycan in association with early bone formation in the developing mandible. J Oral Sci. 2001;43(3):179–88.

CAS  PubMed  Article  Google Scholar 

Domowicz MS, Cortes M, Henry JG, Schwartz NB. Aggrecan modulation of growth plate morphogenesis. Dev Biol. 2009;329(2):242–57.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ishijima M, Suzuki N, Hozumi K, Matsunobu T, Kosaki K, Kaneko H, et al. Perlecan modulates VEGF signaling and is essential for vascularization in endochondral bone formation. Matrix biology : journal of the International Society for Matrix Biology. 2012;31(4):234–45.

CAS  Article  Google Scholar 

Wallace JM, Rajachar RM, Chen XD, Shi S, Allen MR, Bloomfield SA, et al. The mechanical phenotype of biglycan-deficient mice is bone- and gender-specific. Bone. 2006;39(1):106–16.

CAS  PubMed  Article  Google Scholar 

Lu X, Li W, Fukumoto S, Yamada Y, Evans CA, Diekwisch T, et al. The ameloblastin extracellular matrix molecule enhances bone fracture resistance and promotes rapid bone fracture healing. Matrix biology : journal of the International Society for Matrix Biology. 2016;52–54:113–26.

Article  Google Scholar 

Peng T, Huang B, Sun Y, Lu Y, Bonewald L, Chen S, et al. Blocking of proteolytic processing and deletion of glycosaminoglycan side chain of mouse DMP1 by substituting critical amino acid residues. Cells Tissues Organs. 2009;189(1–4):192–7.

CAS  PubMed  Article  Google Scholar 

Nikitovic D, Aggelidakis J, Young MF, Iozzo RV, Karamanos NK, Tzanakakis GN. The biology of small leucine-rich proteoglycans in bone pathophysiology. J Biol Chem. 2012;287(41):33926–33.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Tanaka M, Izumiya M, Haniu H. Current Methods in the Study of Nanomaterials for Bone Regeneration. Nanomaterials (Basel). 2022;12(7):1195.

CAS  Article  Google Scholar 

Venkataiah VS, Yahata Y, Kitagawa A, Inagaki M, Kakiuchi Y, Nakano M, et al. Clinical Applications of Cell-Scaffold Constructs for Bone Regeneration Therapy. Cells. 2021;10(10):2687.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Aino M, Nishida E, Fujieda Y, Orimoto A, Mitani A, Noguchi T, et al. Isolation and characterization of the human immature osteoblast culture system from the alveolar bones of aged donors for bone regeneration therapy. Expert Opin Biol Ther. 2014;14(12):1731–44.

CAS  PubMed  Article  Google Scholar 

Zhang H, Liu S, Zhu B, Xu Q, Ding Y, Jin Y. Composite cell sheet for periodontal regeneration: crosstalk between different types of MSCs in cell sheet facilitates complex periodontal-like tissue regeneration. Stem Cell Res Ther. 2016;7(1):168.

PubMed  PubMed Central  Article  Google Scholar 

Kwon DY, Kwon JS, Park SH, Park JH, Jang SH, Yin XY, et al. A computer-designed scaffold for bone regeneration within cranial defect using human dental pulp stem cells. Sci Rep. 2015;5:12721.

CAS  PubMed  Article  Google Scholar 

Hayes A, Sugahara K, Farrugia B, Whitelock JM, Caterson B, Melrose J. Biodiversity of CS-proteoglycan sulphation motifs: chemical messenger recognition modules with roles in information transfer, control of cellular behaviour and tissue morphogenesis. Biochem J. 2018;475(3):587–620.

CAS  PubMed  Article  Google Scholar 

Ko FC, Sumner DR. How faithfully does intramembranous bone regeneration recapitulate embryonic skeletal development?2020.

Wang X, Luo E, Bi R, Ye B, Hu J, Zou S. Wnt/β-catenin signaling is required for distraction osteogenesis in rats. Connect Tissue Res. 2018;59(1):45–54.

CAS  PubMed  Article  Google Scholar 

Sato M, Ochi T, Nakase T, Hirota S, Kitamura Y, Nomura S, et al. Mechanical tension-stress induces expression of bone morphogenetic protein (BMP)-2 and BMP-4, but not BMP-6, BMP-7, and GDF-5 mRNA, during distraction osteogenesis. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 1999;14(7):1084–95.

CAS  Article  Google Scholar 

Quarto N, Wan DC, Kwan MD, Panetta NJ, Li S, Longaker MT. Origin matters: differences in embryonic tissue origin and Wnt signaling determine the osteogenic potential and healing capacity of frontal and parietal calvarial bones. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2010;25(7):1680–94.

CAS  Google Scholar 

Engin F, Yao Z, Yang T, Zhou G, Bertin T, Jiang MM, et al. Dimorphic effects of Notch signaling in bone homeostasis. Nat Med. 2008;14(3):299–305.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Buettmann EG, McKenzie JA, Migotsky N, Sykes DA, Hu P, Yoneda S, et al. VEGFA From Early Osteoblast Lineage Cells (Osterix+) Is Required in Mice for Fracture Healing.2019; 34, (9): 1690–1706.

Tao Z, Wang J, Wen K, Yao R, Da W, Zhou S, et al. Pyroptosis in Osteoblasts: A Novel Hypothesis Underlying the Pathogenesis of Osteoporosis. Front Endocrinol (Lausanne). 2020;11:548812.

Article  Google Scholar 

留言 (0)

沒有登入
gif