New insights into genome folding by loop extrusion from inducible degron technologies

Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hsieh, T.-H. S. et al. Mapping nucleosome resolution chromosome folding in yeast by Micro-C. Cell 162, 108–119 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bintu, B. et al. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362, eaau1783 (2018). In this work, microscopy and DNA fluorescence in situ hybridization experiments were used to show that TAD structures are heterogeneous at the single-cell (and chromosome) level, and that cohesin degradation randomizes chromosome folding.

PubMed  PubMed Central  Article  Google Scholar 

Boettiger, A. N. et al. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529, 418–422 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Misteli, T. The self-organizing genome: principles of genome architecture and function. Cell 183, 28–45 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Razin, S. V. & Ulianov, S. V. Gene functioning and storage within a folded genome. Cell. Mol. Biol. Lett. 22, 18 (2017).

PubMed  PubMed Central  Article  Google Scholar 

Rowley, M. J. & Corces, V. G. Organizational principles of 3D genome architecture. Nat. Rev. Genet. 19, 789–800 (2018).

CAS  PubMed  Article  Google Scholar 

Gibcus, J. H. et al. A pathway for mitotic chromosome formation. Science 359, eaao6135 (2018). This work charts 3D genome structures leading up to pro-metaphase at high temporal resolution and after degradation of condensins resulting in a model for the formation of mitotic chromosomes.

PubMed  PubMed Central  Article  Google Scholar 

Cremer, T. et al. Chromosome territories — a functional nuclear landscape. Curr. Opin. Cell Biol. 18, 307–316 (2006).

CAS  PubMed  Article  Google Scholar 

Hildebrand, E. M. & Dekker, J. Mechanisms and functions of chromosome compartmentalization. Trends Biochem. Sci. 45, 385–396 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Solovei, I., Thanisch, K. & Feodorova, Y. How to rule the nucleus: divide et impera. Curr. Opin. Cell Biol. 40, 47–59 (2016).

CAS  PubMed  Article  Google Scholar 

Bhat, P., Honson, D. & Guttman, M. Nuclear compartmentalization as a mechanism of quantitative control of gene expression. Nat. Rev. Mol. Cell Biol. 22, 653–670 (2021).

CAS  PubMed  Article  Google Scholar 

Ferrai, C., Castro, I. J., de, Lavitas, L., Chotalia, M. & Pombo, A. Gene positioning. Cold Spring Harb. Perspect. Biol. 2, a000588 (2010).

PubMed  PubMed Central  Article  Google Scholar 

Hoskins, V. E., Smith, K. & Reddy, K. L. The shifting shape of genomes: dynamics of heterochromatin interactions at the nuclear lamina. Curr. Opin. Genet. Dev. 67, 163–173 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

van Steensel, B. & Belmont, A. S. Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell 169, 780–791 (2017).

PubMed  PubMed Central  Article  Google Scholar 

Davidson, I. F. & Peters, J.-M. Genome folding through loop extrusion by SMC complexes. Nat. Rev. Mol. Cell Biol. 22, 445–464 (2021).

CAS  PubMed  Article  Google Scholar 

Kim, Y. & Yu, H. Shaping of the 3D genome by the ATPase machine cohesin. Exp. Mol. Med. 52, 1891–1897 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mirny, L. A., Imakaev, M. & Abdennur, N. Two major mechanisms of chromosome organization. Curr. Opin. Cell Biol. 58, 142–152 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

van Ruiten, M. S. & Rowland, B. D. On the choreography of genome folding: a grand pas de deux of cohesin and CTCF. Curr. Opin. Cell Biol. 70, 84–90 (2021).

PubMed  Article  Google Scholar 

Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl Acad. Sci. USA 112, E6456–E6465 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gomes, N. P. & Espinosa, J. M. Gene-specific repression of the p53 target gene PUMA via intragenic CTCF–cohesin binding. Genes Dev. 24, 1022–1034 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Fudenberg, G. & Nora, E. P. Embryogenesis without CTCF in flies and vertebrates. Nat. Struct. Mol. Biol. 28, 774–776 (2021).

CAS  PubMed  Article  Google Scholar 

Singh, V. P. & Gerton, J. L. Cohesin and human disease: lessons from mouse models. Curr. Opin. Cell Biol. 37, 9–17 (2015).

CAS  PubMed  Article  Google Scholar 

Michaelis, C., Ciosk, R. & Nasmyth, K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35–45 (1997).

CAS  PubMed  Article  Google Scholar 

Busslinger, G. A. et al. Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl. Nature 544, 503–507 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hadjur, S. et al. Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature 460, 410–413 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Schwarzer, W. et al. Two independent modes of chromatin organization revealed by cohesin removal. Nature 551, 51–56 (2017).

PubMed  PubMed Central  Article  Google Scholar 

Sofueva, S. et al. Cohesin-mediated interactions organize chromosomal domain architecture. EMBO J. 32, 3119–3129 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Calderon, L. et al. Cohesin-dependence of neuronal gene expression relates to chromatin loop length. eLife 11, e76539 (2022).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Yatskevich, S., Rhodes, J. & Nasmyth, K. Organization of chromosomal DNA by SMC complexes. Annu. Rev. Genet. 53, 445–482 (2019).

CAS  PubMed  Article  Google Scholar 

Nasmyth, K. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu. Rev. Genet. 35, 673–745 (2001).

CAS  PubMed  Article  Google Scholar 

Pradhan, B. et al. The Smc5/6 complex is a DNA loop extruding motor. Preprint at bioRxiv https://doi.org/10.1101/2022.05.13.491800 (2022).

Venegas, A. B., Natsume, T., Kanemaki, M. & Hickson, I. D. Inducible degradation of the human SMC5/6 complex reveals an essential role only during interphase. Cell Rep. 31, 107533 (2020).

CAS  PubMed  Article  Google Scholar 

Zabolotnaya, E., Mela, I., Henderson, R. M. & Robinson, N. P. Turning the Mre11/Rad50 DNA repair complex on its head: lessons from SMC protein hinges, dynamic coiled-coil movements and DNA loop-extrusion? Biochem. Soc. Trans. 48, 2359–2376 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gurzau, A. D., Blewitt, M. E., Czabotar, P. E., Murphy, J. M. & Birkinshaw, R. W. Relating SMCHD1 structure to its function in epigenetic silencing. Biochem. Soc. Trans. 48, 1751–1763 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Waizenegger, I. C., Hauf, S., Meinke, A. & Peters, J.-M. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103, 399–410 (2000).

CAS  PubMed  Article  Google Scholar 

Goloborodko, A., Imakaev, M. V., Marko, J. F. & Mirny, L. Compaction and segregation of sister chromatids via active loop extrusion. eLife 5, e14

留言 (0)

沒有登入
gif