Rethinking cancer targeting strategies in the era of smart cell therapeutics

Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037 (2001).

CAS  PubMed  Google Scholar 

Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

CAS  PubMed  Google Scholar 

Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Morgan, R. A. et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18, 843–851 (2010).

CAS  PubMed  PubMed Central  Google Scholar 

Petrelli, F. et al. Different toxicity of cetuximab and panitumumab in metastatic colorectal cancer treatment: a systematic review and meta-analysis. Oncology 94, 191–199 (2018).

CAS  PubMed  Google Scholar 

Soria, J.-C. et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N. Engl. J. Med. 378, 113–125 (2018).

CAS  PubMed  Google Scholar 

Orlando, E. J. et al. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat. Med. 24, 1504–1506 (2018).

CAS  PubMed  Google Scholar 

Raje, N. et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N. Engl. J. Med. 380, 1726–1737 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Kershaw, M. H., Westwood, J. A. & Darcy, P. K. Gene-engineered T cells for cancer therapy. Nat. Rev. Cancer 13, 525–541 (2013).

CAS  PubMed  Google Scholar 

Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

PubMed  PubMed Central  Google Scholar 

Kloss, C. C., Condomines, M., Cartellieri, M., Bachmann, M. & Sadelain, M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat. Biotechnol. 31, 71–75 (2013).

CAS  PubMed  Google Scholar 

Sukumaran, S. et al. Enhancing the potency and specificity of engineered T cells for cancer treatment. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-17-1298 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Wilkie, S. et al. Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J. Clin. Immunol. 32, 1059–1070 (2012).

CAS  PubMed  Google Scholar 

Morsut, L. et al. Engineering customized cell sensing and response behaviors using synthetic Notch receptors. Cell 164, 780–791 (2016).

Roybal, K. T. et al. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell 164, 770–779 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Srivastava, S. et al. Logic-gated ROR1 chimeric antigen receptor expression rescues T cell-mediated toxicity to normal tissues and enables selective tumor targeting. Cancer Cell 35, 489–503 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Williams, J. Z. et al. Precise T cell recognition programs designed by transcriptionally linking multiple receptors. Science 370, 1099–1104 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Fedorov, V. D., Themeli, M. & Sadelain, M. PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci. Transl Med. 5, 215ra172 (2013).

PubMed  PubMed Central  Google Scholar 

Richards, R. M. et al. NOT-gated CD93 CAR T cells effectively target AML with minimized endothelial cross-reactivity. Blood Cancer Discov. 2, 648–665 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Hamburger, A. E. et al. Engineered T cells directed at tumors with defined allelic loss. Mol. Immunol. 128, 298–310 (2020).

CAS  PubMed  Google Scholar 

Mazor, Y. et al. Enhanced tumor-targeting selectivity by modulating bispecific antibody binding affinity and format valence. Sci. Rep. 7, 40098 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Runcie, K., Budman, D. R., John, V. & Seetharamu, N. Bi-specific and tri-specific antibodies — the next big thing in solid tumor therapeutics. Mol. Med. Camb. Mass. 24, 50 (2018).

PubMed  PubMed Central  Google Scholar 

Neijssen, J. et al. Discovery of amivantamab (JNJ-61186372), a bispecific antibody targeting EGFR and MET. J. Biol. Chem. 296, 100641 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Park, K. et al. Amivantamab in EGFR Exon 20 insertion-mutated non-small-cell lung cancer progressing on platinum chemotherapy: initial results from the CHRYSALIS phase I study. J. Clin. Oncol. 39, 3391–3402 (2021).

CAS  PubMed  Google Scholar 

Gunnoo, S. B. et al. Creation of a gated antibody as a conditionally functional synthetic protein. Nat. Commun. 5, 4388 (2014).

CAS  PubMed  Google Scholar 

Lajoie, M. J. et al. Designed protein logic to target cells with precise combinations of surface antigens. Science https://doi.org/10.1126/science.aba6527 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Zhao, W. & Sher, X. Systematically benchmarking peptide–MHC binding predictors: from synthetic to naturally processed epitopes. PLoS Comput. Biol. 14, e1006457 (2018).

PubMed  PubMed Central  Google Scholar 

Kalaora, S. et al. Combined analysis of antigen presentation and T-cell recognition reveals restricted immune responses in melanoma. Cancer Discov. 8, 1366–1375 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Douglass, J. et al. Bispecific antibodies targeting mutant RAS neoantigens. Sci. Immunol. 6, eabd5515 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Hsiue, E. H.-C. et al. Targeting a neoantigen derived from a common TP53 mutation. Science 371, eabc8697 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Cancer Genome Atlas Research Network. et al. The Cancer Genome Atlas pan-cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).

PubMed Central  Google Scholar 

Uhlén, M. et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol. Cell. Proteom. MCP 4, 1920–1932 (2005).

Google Scholar 

Bausch-Fluck, D. et al. A mass spectrometric-derived cell surface protein atlas. PLoS ONE 10, e0121314 (2015).

PubMed  PubMed Central  Google Scholar 

Aguet, F. et al. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).

Google Scholar 

Fagerberg, L. et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteom. MCP 13, 397–406 (2014).

CAS  Google Scholar 

Tabula Muris Consortium. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018).

Google Scholar 

He, S. et al. Single-cell transcriptome profiling of an adult human cell atlas of 15 major organs. Genome Biol. 21, 294 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

The Tabula Sapiens Consortium. The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).

Google Scholar 

Hummel, H.-D. et al. Pasotuxizumab, a BiTE® immune therapy for castration-resistant prostate cancer: phase I, dose-escalation study findings. Immunotherapy 13, 125–141 (2021).

CAS  PubMed  Google Scholar 

Narayan, V. et al. PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial. Nat. Med. https://doi.org/10.1038/s41591-022-01726-1 (2022).

Article  PubMed  Google Scholar 

Uhlen, M. et al. A pathology atlas of the human cancer transcriptome. Science 357, eaan2507 (2017).

PubMed  Google Scholar 

Thistlethwaite, F. C. et al. The clinical efficacy of first-generation carcinoembryonic antigen (CEACAM5)-specific CAR T cells is limited by poor persistence and transient pre-conditioning-dependent respiratory toxicity. Cancer Immunol. Immunother. 66, 1425–1436 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Perna, F. et al. Integrating proteomics and transcriptomics for systematic combinatorial chimeric antigen receptor therapy of AML. Cancer Cell 32, 506–519 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Hu, Z. et al. The Cancer Surfaceome Atlas integrates genomic, functional and drug response data to identify actionable targets. Nat. Cancer 2, 1406–1422 (2021).

CAS  PubMed  Google Scholar 

Dannenfelser, R. et al. Discriminatory power of combinatorial antigen recognition in cancer T cell therapies. Cell Syst. 11, 215–228.e5 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Baslan, T. & Hicks, J. Unravelling biology and shifting paradigms in cancer with single-cell sequencing. Nat. Rev. Cancer 17, 557–569 (2017).

CAS 

留言 (0)

沒有登入
gif