Relationship between sperm NAD + concentration and reproductive aging in normozoospermia men:A Cohort study

Feldman HA, Goldstein I, Hatzichristou DG, Krane RJ, McKinlay JB. Impotence and its medical and psychosocial correlates: results of the Massachusetts Male Aging Study. J Urol. 1994;151:54–61.

CAS  Article  Google Scholar 

Harris ID, Fronczak C, Roth L, Meacham RB. Fertility and the Aging Male. Rev Urol. 2011;13:e184–90.

PubMed  PubMed Central  Google Scholar 

Morris G, Mavrelos D, Theodorou E, Campbell-Forde M, Cansfield D, Yasmin E, et al. Effect of paternal age on outcomes in assisted reproductive technology cycles: systematic review and meta-analysis. F&S Reviews. 2020;1:16–34.

Article  Google Scholar 

Bertoldo MJ, Listijono DR, Ho W-HJ, Riepsamen AH, Goss DM, Richani D, et al. NAD + Repletion Rescues Female Fertility during Reproductive Aging. Cell Rep. 2020;30:1670–81.e7.

CAS  Article  Google Scholar 

Yang Q, Cong L, Wang Y, Luo X, Li H, Wang H, et al. Increasing ovarian NAD + levels improve mitochondrial functions and reverse ovarian aging. Free Radic Biol Med. 2020;156:1–10.

CAS  Article  Google Scholar 

Schultz MB, Sinclair DA. Why NAD + Declines during Aging: It’s Destroyed. Cell Metab. 2016;23:965–6.

CAS  Article  Google Scholar 

Verdin E. NAD + in aging, metabolism, and neurodegeneration. Science. 2015;350:1208–13.

CAS  Article  Google Scholar 

McReynolds MR, Chellappa K, Baur JA. Age-related NAD + decline. Exp Gerontol. 2020;134:110888.

CAS  Article  Google Scholar 

Okabe K, Yaku K, Tobe K, Nakagawa T. Implications of altered NAD metabolism in metabolic disorders. J Biomed Sci. 2019;26:34.

Article  Google Scholar 

Gomes AP, Price NL, Ling AJY, Moslehi JJ, Montgomery MK, Rajman L, et al. Declining NAD + Induces a Pseudohypoxic State Disrupting Nuclear-Mitochondrial Communication during Aging. Cell. 2013;155:1624–38.

CAS  Article  Google Scholar 

Chen W, Zhang Z, Chang C, Yang Z, Wang P, Fu H, et al. A bioenergetic shift is required for spermatogonial differentiation. Cell Discov. 2020;6:1–17.

CAS  Article  Google Scholar 

Hu YA, Lu JC, Shao Y, Huang YF, Lü NQ. Comparison of the semen analysis results obtained from two branded computer-aided sperm analysis systems. Andrologia. 2013;45:315–8.

CAS  Article  Google Scholar 

World Health Organization. WHO laboratory manual for the examination and processing of human semen. 2010;:271.

Schwartz D, Mayaux M-J, Spira A, Moscato M-L, Jouannet P, Czyglik F, et al. Semen characteristics as a function of age in 833 fertile men. Fertil Steril. 1983;39:530–5.

CAS  Article  Google Scholar 

Fisch H, Goluboff ET, Olson JH, Feldshuh J, Broder SJ, Barad DH. Semen analyses in 1,283 men from the United States over a 25-year period: no decline in quality. Fertil Steril. 1996;65:1009–14.

CAS  Article  Google Scholar 

Sloter E, Schmid TE, Marchetti F, Eskenazi B, Nath J, Wyrobek AJ. Quantitative effects of male age on sperm motion. Hum Reprod. 2006;21:2868–75.

CAS  Article  Google Scholar 

Cocuzza M, Athayde KS, Agarwal A, Sharma R, Pagani R, Lucon AM, et al. Age-Related Increase of Reactive Oxygen Species in Neat Semen in Healthy Fertile Men. Urology. 2008;71:490–4.

Article  Google Scholar 

Zubkova EV, Robaire B. Effects of ageing on spermatozoal chromatin and its sensitivity to in vivo and in vitro oxidative challenge in the Brown Norway rat. Hum Reprod. 2006;21:2901–10.

CAS  Article  Google Scholar 

Hammiche F, Laven JSE, Boxmeer JC, Dohle GR, Steegers EP, Steegers-Theunissen RPM. Sperm quality decline among men below 60 years of age undergoing IVF or ICSI treatment. J Androl. 2011;32:70–6.

CAS  Article  Google Scholar 

Vannini N, Campos V, Girotra M, Trachsel V, Rojas-Sutterlin S, Tratwal J, et al. The NAD-Booster Nicotinamide Riboside Potently Stimulates Hematopoiesis through Increased Mitochondrial Clearance. Cell Stem Cell. 2019;24:405–18.e7.

CAS  Article  Google Scholar 

Zuckerman S, Baker TG. The development of the ovary and the process of oogenesis. The ovary. 1977;1:41–67.

Google Scholar 

Youngson NA, Uddin GM, Das A, Martinez C, Connaughton HS, Whiting S, et al. Impacts of obesity, maternal obesity and nicotinamide mononucleotide supplementation on sperm quality in mice. Reproduction. 2019;158:171–81.

CAS  Article  Google Scholar 

Shukla S, Jha RK, Laloraya M, Kumar PG. Identification of non-mitochondrial NADPH oxidase and the spatio-temporal organization of its components in mouse spermatozoa. Biochem Biophys Res Commun. 2005;331:476–83.

CAS  Article  Google Scholar 

Frederick DW, Loro E, Liu L, Davila A, Chellappa K, Silverman IM, et al. Loss of NAD Homeostasis Leads to Progressive and Reversible Degeneration of Skeletal Muscle. Cell Metabol. 2016;24:269–82.

CAS  Article  Google Scholar 

Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem. 2002;277:45099–107.

CAS  Article  Google Scholar 

Coussens M, Maresh JG, Yanagimachi R, Maeda G, Allsopp R. Sirt1 deficiency attenuates spermatogenesis and germ cell function. PLoS ONE. 2008;3:e1571.

Article  Google Scholar 

留言 (0)

沒有登入
gif