A1 Adenosine Receptor Activation Inhibits P2X3 Receptor–Mediated ATP Currents in Rat Dorsal Root Ganglion Neurons

Luongo L, Guida F, Maione S, Jacobson KA, Salvemini D (2021) Adenosine metabotropic receptors in chronic pain management. Front Pharmacol 12:651038. https://doi.org/10.3389/fphar.2021.651038

CAS  Article  PubMed  PubMed Central  Google Scholar 

Jung SM, Peyton L, Essa H, Choi DS (2022) Adenosine receptors: emerging non-opioids targets for pain medications. Neurobiol Pain 11:100087. https://doi.org/10.1016/j.ynpai.2022.100087

CAS  Article  PubMed  PubMed Central  Google Scholar 

Sawynok J (2016) Adenosine receptor targets for pain. Neuroscience 338:1–18. https://doi.org/10.1016/j.neuroscience.2015.10.031

CAS  Article  PubMed  Google Scholar 

Vincenzi F, Pasquini S, Borea PA, Varani K (2020) Targeting adenosine receptors: a potential pharmacological avenue for acute and chronic pain. Int J Mol Sci 21(22):8710. https://doi.org/10.3390/ijms21228710

CAS  Article  PubMed Central  Google Scholar 

Schulte G, Robertson B, Fredholm BB, DeLander GE, Shortland P, Molander C (2003) Distribution of antinociceptive adenosine A1 receptors in the spinal cord dorsal horn, and relationship to primary afferents and neuronal subpopulations. Neuroscience 121(4):907–916. https://doi.org/10.1016/s0306-4522(03)00480-9

CAS  Article  PubMed  Google Scholar 

Zahn PK, Straub H, Wenk M, Pogatzki-Zahn EM (2007) Adenosine A1 but not A2a receptor agonist reduces hyperalgesia caused by a surgical incision in rats: a pertussis toxin-sensitive G protein-dependent process. Anesthesiology 107(5):797–806. https://doi.org/10.1097/01.anes.0000286982.36342.3f

CAS  Article  PubMed  Google Scholar 

Poon A, Sawynok J (1998) Antinociception by adenosine analogs and inhibitors of adenosine metabolism in an inflammatory thermal hyperalgesia model in the rat. Pain 74(2–3):235–245. https://doi.org/10.1016/s0304-3959(97)00186-3

CAS  Article  PubMed  Google Scholar 

Okumura T, Nozu T, Ishioh M, Igarashi S, Kumei S, Ohhira M (2020) Adenosine A1 receptor agonist induces visceral antinociception via 5-HT1A, 5-HT2A, dopamine D1 or cannabinoid CB1 receptors, and the opioid system in the central nervous system. Physiol Behav 220:112881. https://doi.org/10.1016/j.physbeh.2020.112881

CAS  Article  PubMed  Google Scholar 

Curros-Criado MM, Herrero JF (2005) The antinociceptive effects of the systemic adenosine A1 receptor agonist CPA in the absence and in the presence of spinal cord sensitization. Pharmacol Biochem Behav 82(4):721–726. https://doi.org/10.1016/j.pbb.2005.11.014

CAS  Article  PubMed  Google Scholar 

Katz NK, Ryals JM, Wright DE (2015) Central or peripheral delivery of an adenosine A1 receptor agonist improves mechanical allodynia in a mouse model of painful diabetic neuropathy. Neuroscience 285:312–323. https://doi.org/10.1016/j.neuroscience.2014.10.065

CAS  Article  PubMed  Google Scholar 

Gao X, Lu Q, Chou G, Wang Z, Pan R, Xia Y, Hu H, Dai Y (2014) Norisoboldine attenuates inflammatory pain via the adenosine A1 receptor. Eur J Pain 18(7):939–948. https://doi.org/10.1002/j.1532-2149.2013.00439.x

CAS  Article  PubMed  Google Scholar 

Goldman N, Chen M, Fujita T, Xu Q, Peng W, Liu W, Jensen TK, Pei Y et al (2010) Adenosine A1 receptors mediate local anti-nociceptive effects of acupuncture. Nat Neurosci 13(7):883–888. https://doi.org/10.1038/nn.2562

CAS  Article  PubMed  PubMed Central  Google Scholar 

Liao HY, Hsieh CL, Huang CP, Lin YW (2017) Electroacupuncture attenuates CFA-induced inflammatory pain by suppressing Nav1.8 through S100B, TRPV1, opioid, and adenosine pathways in mice. Sci Rep 7:42531. https://doi.org/10.1038/srep42531

CAS  Article  PubMed  PubMed Central  Google Scholar 

Takano T, Chen X, Luo F, Fujita T, Ren Z, Goldman N, Zhao Y, Markman JD et al (2012) Traditional acupuncture triggers a local increase in adenosine in human subjects. J Pain 13(12):1215–1223. https://doi.org/10.1016/j.jpain.2012.09.012

Article  PubMed  PubMed Central  Google Scholar 

Valerio DA, Ferreira FI, Cunha TM, Alves-Filho JC, Lima FO, De Oliveira JR, Ferreira SH, Cunha FQ et al (2009) Fructose-1,6-bisphosphate reduces inflammatory pain-like behaviour in mice: role of adenosine acting on A1 receptors. Br J Pharmacol 158(2):558–568. https://doi.org/10.1111/j.1476-5381.2009.00325.x

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zylka MJ (2010) Needling adenosine receptors for pain relief. Nat Neurosci 13(7):783–784. https://doi.org/10.1038/nn0710-783

CAS  Article  PubMed  Google Scholar 

Draper-Joyce CJ, Bhola R, Wang J, Bhattarai A, Nguyen ATN, Cowie-Kent I, O’Sullivan K, Chia LY et al (2021) Positive allosteric mechanisms of adenosine A1 receptor-mediated analgesia. Nature 597(7877):571–576. https://doi.org/10.1038/s41586-021-03897-2

CAS  Article  PubMed  PubMed Central  Google Scholar 

Vincenzi F, Targa M, Romagnoli R, Merighi S, Gessi S, Baraldi PG, Borea PA, Varani K (2014) TRR469, a potent A(1) adenosine receptor allosteric modulator, exhibits anti-nociceptive properties in acute and neuropathic pain models in mice. Neuropharmacology 81:6–14. https://doi.org/10.1016/j.neuropharm.2014.01.028

CAS  Article  PubMed  Google Scholar 

Kan HW, Chang CH, Lin CL, Lee YC, Hsieh ST, Hsieh YL (2018) Downregulation of adenosine and adenosine A1 receptor contributes to neuropathic pain in resiniferatoxin neuropathy. Pain 159(8):1580–1591. https://doi.org/10.1097/j.pain.0000000000001246

CAS  Article  PubMed  PubMed Central  Google Scholar 

Johansson B, Halldner L, Dunwiddie TV, Masino SA, Poelchen W, Gimenez-Llort L, Escorihuela RM, Fernandez-Teruel A et al (2001) Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc Natl Acad Sci U S A 98(16):9407–9412. https://doi.org/10.1073/pnas.161292398

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wu WP, Hao JX, Halldner L, Lovdahl C, DeLander GE, Wiesenfeld-Hallin Z, Fredholm BB, Xu XJ (2005) Increased nociceptive response in mice lacking the adenosine A1 receptor. Pain 113(3):395–404. https://doi.org/10.1016/j.pain.2004.11.020

CAS  Article  PubMed  Google Scholar 

Doak GJ, Sawynok J (1995) Complex role of peripheral adenosine in the genesis of the response to subcutaneous formalin in the rat. Eur J Pharmacol 281(3):311–318. https://doi.org/10.1016/0014-2999(95)00257-l

CAS  Article  PubMed  Google Scholar 

Karlsten R, Gordh T, Post C (1992) Local antinociceptive and hyperalgesic effects in the formalin test after peripheral administration of adenosine analogues in mice. Pharmacol Toxicol 70(6 Pt 1):434–438. https://doi.org/10.1111/j.1600-0773.1992.tb00503.x

CAS  Article  PubMed  Google Scholar 

Macedo-Junior SJ, Nascimento FP, Luiz-Cerutti M, Santos ARS (2021) The role of peripheral adenosine receptors in glutamate-induced pain nociceptive behavior. Purinergic Signal 17(2):303–312. https://doi.org/10.1007/s11302-021-09781-y

CAS  Article  PubMed  PubMed Central  Google Scholar 

Liu J, Reid AR, Sawynok J (2013) Antinociception by systemically-administered acetaminophen (paracetamol) involves spinal serotonin 5-HT7 and adenosine A1 receptors, as well as peripheral adenosine A1 receptors. Neurosci Lett 536:64–68. https://doi.org/10.1016/j.neulet.2012.12.052

CAS  Article  PubMed  Google Scholar 

Sawynok J, Reid AR, Liu J (2013) Spinal and peripheral adenosine A(1) receptors contribute to antinociception by tramadol in the formalin test in mice. Eur J Pharmacol 714(1–3):373–378. https://doi.org/10.1016/j.ejphar.2013.07.012

CAS  Article  PubMed  Google Scholar 

Bradbury EJ, Burnstock G, McMahon SB (1998) The expression of P2X3 purinoreceptors in sensory neurons: effects of axotomy and glial-derived neurotrophic factor. Mol Cell Neurosci 12(4–5):256–268. https://doi.org/10.1006/mcne.1998.0719

CAS  Article  PubMed  Google Scholar 

Vulchanova L, Riedl MS, Shuster SJ, Buell G, Surprenant A, North RA, Elde R (1997) Immunohistochemical study of the P2X2 and P2X3 receptor subunits in rat and monkey sensory neurons and their central terminals. Neuropharmacology 36(9):1229–1242. https://doi.org/10.1016/s0028-3908(97)00126-3

CAS  Article  PubMed  Google Scholar 

Burnstock G (2016) Purinergic mechanisms and pain. Adv Pharmacol 75:91–137. https://doi.org/10.1016/bs.apha.2015.09.001

CAS  Article  PubMed  Google Scholar 

Inoue K (2022) The role of ATP receptors in pain signaling. Neurochem Res. https://doi.org/10.1007/s11064-021-03516-6

Article  PubMed  Google Scholar 

Honore P, Kage K, Mikusa J, Watt AT, Johnston JF, Wyatt JR, Faltynek CR, Jarvis MF et al (2002) Analgesic profile of intrathecal P2X(3) antisense oligonucleotide treatment in chronic inflammatory and neuropathic pain states in rats. Pain 99(1–2):11–19. https://doi.org/10.1016/s0304-3959(02)00032-5

CAS  Article  PubMed  Google Scholar 

Jarvis MF, Burgard EC, McGaraughty S, Honore P, Lynch K, Brennan TJ, Subieta A, Van Biesen T et al (2002) A-317491, a novel potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat. Proc Natl Acad Sci U S A 99(26):17179–17184. https://doi.org/10.1073/pnas.252537299

CAS  Article  PubMed  PubMed Central  Google Scholar 

McGaraughty S, Wismer CT, Zhu CZ, Mikusa J, Honore P, Chu KL, Lee CH, Faltynek CR et al (2003) Effects of A-317491, a novel and selective P2X3/P2X2/3 receptor antagonist, on neuropathic, inflammatory and chemogenic nociception following intrathecal and intraplantar administration. Br J Pharmacol 140(8):1381–1388. https://doi.org/10.1038/sj.bjp.0705574

CAS  Article 

留言 (0)

沒有登入
gif