Novel 1,3-diaryl pyrazole derivatives bearing methylsulfonyl moiety: Design, synthesis, molecular docking and dynamics, with dual activities as anti-inflammatory and anticancer agents through selectively targeting COX-2

Three series of novel 1-aryl-3-(4-methylsulfonylphenyl) pyrazole derivatives were synthesized, characterized by several spectroscopic techniques, and investigated as potential anti-inflammatory and anticancer agents. The biological evaluation showed that almost all the synthesized compounds have significant potency and selectivity for the COX-2 enzyme over COX-1 with noticeable anti-inflammatory activity compared to celecoxib and indomethacin. Accordingly, compounds 8a, 8b, 8e, 8j, 8l, 9a, 9b, 9c, and 10b showed the best COX-2 inhibition (IC50 ranged from 0.059 to 0.079 µM) with good anti-inflammatory activity (% of edema inhibition ranged from 87.9 to 67.5). Moreover, compound 8b possessed the highest selectivity index regarding COX-2 isozyme (SI = 211) in comparison to celecoxib (SI = 312) with good in vivo anti-inflammatory activity (% edema inhibition = 77.70 after 5 h). Also, compounds 8a, 8b, 8j, 8l, and 9a showed ulcerogenic liability and histopathological changes close to celecoxib. Molecular docking and dynamics simulations were also conducted to illustrate the binding modes inside the COX-2 active site. Furthermore, all compounds were screened against three cancer cell line panels to determine their antiproliferative properties by MTT assay. Compounds 8a, 8b, and 8e along with their cyclized forms 9a, 9b, and 9c exhibited a considerable antiproliferative effect on liver (IC50: 6.81–19.71 µM), colon (IC50: 7.64–15.34 µM), and breast (IC50: 6.77–18.41 µM) cancer cell lines. More importantly, compounds 8a, 8e, 9a, and 9b were found to be safe on normal HEK-293T kidney cells in comparison to cancer.

cells, especially compound 8e with IC50 value of 66.45 µM. Mechanistic studies demonstrated the apoptotic activity of the most active compounds 8a, 8e, 9a, and 9b on MCF-7 cancer cells by inducing a strong S phase cell cycle arrest suggesting that the mechanism of its antiproliferative activity may be through COX-2 inhibition. Finally, the hit compounds 8a, 8b and 9a were discovered to have selective COX-2 inhibitory activity and good anti-inflammatory activity with minimal ulcerogenic effect as well as potent anticancer activity.

留言 (0)

沒有登入
gif