Beyond direct killing—novel cellular immunotherapeutic strategies to reshape the tumor microenvironment

Geiger JD et al (2001) Vaccination of pediatric solid tumor patients with tumor lysate-pulsed dendritic cells can expand specific T cells and mediate tumor regression1. Can Res 61(23):8513–8519

CAS  Google Scholar 

Dohnal AM et al (2007) Phase I study of tumor Ag-loaded IL-12 secreting semi-mature DC for the treatment of pediatric cancer. Cytotherapy 9(8):755–770. https://doi.org/10.1080/14653240701589221

CAS  Article  PubMed  Google Scholar 

Lasky JL et al (2013) Autologous tumor lysate-pulsed dendritic cell immunotherapy for pediatric patients with newly diagnosed or recurrent high-grade gliomas. Anticancer Res 33(5):2047

CAS  PubMed  PubMed Central  Google Scholar 

Wooster AL et al (2021) Dendritic cell vaccine therapy for colorectal cancer. Pharmacol Res 164:105374. https://doi.org/10.1016/j.phrs.2020.105374

CAS  Article  PubMed  Google Scholar 

Sutherland SIM et al (2021) Moving on from Sipuleucel-T: new dendritic cell vaccine strategies for prostate cancer. Front Immunol 12:641307. https://doi.org/10.3389/fimmu.2021.641307

Zhao L, Cao YJ (2019) Engineered T cell therapy for cancer in the clinic. Front Immunol 10:2250. https://doi.org/10.3389/fimmu.2019.02250

Rohaan MW et al (2018) Adoptive transfer of tumor-infiltrating lymphocytes in melanoma: a viable treatment option. J Immunother Cancer 6(1):102. https://doi.org/10.1186/s40425-018-0391-1

Article  PubMed  PubMed Central  Google Scholar 

Zhang J, Wang L (2019) The emerging world of TCR-T cell trials against cancer: a systematic review. Technol Cancer Res Treat 18:1533033819831068. https://doi.org/10.1177/1533033819831068

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zhang C et al (2017) Engineering CAR-T cells. Biomark Res 5(1):22. https://doi.org/10.1186/s40364-017-0102-y

Article  PubMed  PubMed Central  Google Scholar 

Gaissmaier L, Elshiaty M, Christopoulos P (2020) Breaking bottlenecks for the TCR therapy of cancer. Cells 9(9):2095. https://doi.org/10.3390/cells9092095

CAR T Cells: Engineering patients’ immune cells to treat their cancers. 2022 March 10, 2022 [cited 2022 July 26, 2022]; Available from: https://www.cancer.gov/about-cancer/treatment/research/car-t-cells

Xie G et al (2020) CAR-NK cells: a promising cellular immunotherapy for cancer. eBioMedicine 59:102975. https://doi.org/10.1016/j.ebiom.2020.102975

CAS  Article  PubMed  PubMed Central  Google Scholar 

Capsomidis A et al (2018) Chimeric antigen receptor-engineered human gamma delta T cells: enhanced cytotoxicity with retention of cross presentation. Mol Ther 26(2):354–365. https://doi.org/10.1016/j.ymthe.2017.12.001

CAS  Article  PubMed  Google Scholar 

Fisher J, Anderson J (2018) engineering approaches in human gamma delta T cells for cancer immunotherapy. Front Immunol 9:1409. https://doi.org/10.3389/fimmu.2018.01409

CAS  Article  PubMed  PubMed Central  Google Scholar 

June Carl H et al (2018) CAR T cell immunotherapy for human cancer. Science 359(6382):1361–1365. https://doi.org/10.1126/science.aar6711

CAS  Article  PubMed  Google Scholar 

Sermer D, Brentjens R (2019) CAR T-cell therapy: full speed ahead. Hematol Oncol 37(S1):95–100. https://doi.org/10.1002/hon.2591

CAS  Article  PubMed  Google Scholar 

D’Aloia MM et al (2018) CAR-T cells: the long and winding road to solid tumors. Cell Death Dis 9(3):282. https://doi.org/10.1038/s41419-018-0278-6

CAS  Article  PubMed  PubMed Central  Google Scholar 

Newick K et al (2017) CAR T cell therapy for solid tumors. Annu Rev Med 68(1):139–152. https://doi.org/10.1146/annurev-med-062315-120245

CAS  Article  PubMed  Google Scholar 

Lesch S et al (2020) Determinants of response and resistance to CAR T cell therapy. Semin Cancer Biol 65:80–90. https://doi.org/10.1016/j.semcancer.2019.11.004

CAS  Article  PubMed  Google Scholar 

Munn DH, Bronte V (2016) Immune suppressive mechanisms in the tumor microenvironment. Curr Opin Immunol 39:1–6. https://doi.org/10.1016/j.coi.2015.10.009

CAS  Article  PubMed  Google Scholar 

Chaudhary B, Elkord E (2016) Regulatory T Cells in the tumor microenvironment and cancer progression: role and therapeutic targeting. Vaccines 4(3):28. https://doi.org/10.3390/vaccines4030028

Kumar V et al (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37(3):208–220. https://doi.org/10.1016/j.it.2016.01.004

CAS  Article  PubMed  PubMed Central  Google Scholar 

Singhal S et al (2019) Human tumor-associated monocytes/macrophages and their regulation of T cell responses in early-stage lung cancer. Sci Transl Med 11(479):eaat1500. https://doi.org/10.1126/scitranslmed.aat1500

CAS  Article  PubMed  PubMed Central  Google Scholar 

Komi DEA, Redegeld FA (2020) Role of mast cells in shaping the tumor microenvironment. Clin Rev Allergy Immunol 58(3):313–325. https://doi.org/10.1007/s12016-019-08753-w

CAS  Article  PubMed  Google Scholar 

Powell DR, Huttenlocher A (2016) Neutrophils in the tumor microenvironment. Trends Immunol 37(1):41–52. https://doi.org/10.1016/j.it.2015.11.008

CAS  Article  PubMed  Google Scholar 

Atiya H et al (2020) Mesenchymal stem cells in the tumor microenvironment. In: Birbrair A (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1234. Springer, Cham

Landskron G et al (2014) Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res 2014:149185. https://doi.org/10.1155/2014/149185

CAS  Article  PubMed  PubMed Central  Google Scholar 

Banerjee HN et al (2021) Efferocytosis and the story of “Find Me,” “Eat Me,” and “Don’t Eat Me” signaling in the tumor microenvironment. In: Birbrair A (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1329. Springer, Cham

Takimoto CH et al (2019) The macrophage & #x2018;Do not eat me’ signal, CD47, is a clinically validated cancer immunotherapy target. Ann Oncol 30(3):486–489. https://doi.org/10.1093/annonc/mdz006

CAS  Article  PubMed  Google Scholar 

Bradley CA (2019) CD24 — a novel ‘don’t eat me’ signal. Nat Rev Cancer 19(10):541–541. https://doi.org/10.1038/s41568-019-0193-x

CAS  Article  PubMed  Google Scholar 

Ganguly D et al (2020) Cancer-associated fibroblasts: versatile players in the tumor microenvironment. Cancers 12(9):2652. https://doi.org/10.3390/cancers12092652

Xing F, Saidou J, Watabe K (2010) Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci (Landmark Ed) 15(1):166–179. https://doi.org/10.2741/3613

CAS  Article  Google Scholar 

Sahai E et al (2020) A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer 20(3):174–186. https://doi.org/10.1038/s41568-019-0238-1

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chen X, Song E (2019) Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discovery 18(2):99–115. https://doi.org/10.1038/s41573-018-0004-1

CAS  Article  PubMed  Google Scholar 

Fiori ME et al (2019) Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance. Mol Cancer 18(1):70. https://doi.org/10.1186/s12943-019-0994-2

Article  PubMed  PubMed Central  Google Scholar 

Santi A, Kugeratski FG, Zanivan S (2018) Cancer associated fibroblasts: the architects of stroma remodeling. Proteomics 18(5–6):e1700167. https://doi.org/10.1002/pmic.201700167

CAS  Article  PubMed  Google Scholar 

Pietras K, Ostman A (2010) Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res 316(8):1324–1331. https://doi.org/10.1016/j.yexcr.2010.02.045

CAS  Article  PubMed  Google Scholar 

Li H, Fan X, Houghton J (2007) Tumor microenvironment: the role of the tumor stroma in cancer. J Cell Biochem 101(4):805–815. https://doi.org/10.1002/jcb.21159

CAS  Article  PubMed  Google Scholar 

Sebens S, Schafer H (2012) The tumor stroma as mediator of drug resistance - a potential target to improve cancer therapy? Curr Pharm Biotechnol 13(11):2259–2272. https://doi.org/10.2174/138920112802501999

Article  PubMed  Google Scholar 

Chi J-Y et al (2015) Targeting chemotherapy-induced PTX3 in tumor stroma to prevent the progression of drug-resistant cancers. Oncotarget 6(27):23987–24001. https://doi.org/10.18632/oncotarget.4364

Article  PubMed  PubMed Central  Google Scholar 

Chung AS, Lee J, Ferrara N (2010) Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer 10(7):505–514. https://doi.org/10.1038/nrc2868

CAS  Article  PubMed  Google Scholar 

Bagley SJ, O’Rourke DM (2020) Clinical investigation of CAR T cells for solid tumors: lessons learned and future directions. Pharmacol Ther 205:107419. https://doi.org/10.1016/j.pharmthera.2019.107419

CAS  Article  PubMed  Google Scholar 

Fu R et al (2021) Delivery techniques for enhancing CAR T cell therapy against solid tumors. Adv Func Mater 31(44):2009489. https://doi.org/10.1002/adfm.202009489

CAS  Article  Google Scholar 

Stock S et al (2022) Enhanced chimeric antigen receptor T cell therapy through co-application of synergistic combination partners. Biomedicines 10(2):307. https://doi.org/10.3390/biomedicines10020307

Gkretsi V et al (2015) Remodeling components of the tumor microenvironment to enhance cancer therapy. Front Oncol 5:214. https://doi.org/10.3389/fonc.2015.00214

留言 (0)

沒有登入
gif