Hemodilution on microvascular oxygen delivery potential of the blood during coronary bypass surgery

Rampling M. Red cell aggregation and yield stress. In: Lowe G, editor. Clinical blood rheology. 1st ed. Boca Raton: CRC Press; 1988. p. 45–64.

Google Scholar 

Barile L, Fominskiy E, Di Tomasso N, Alpizar Castro LE, Landoni G, De Luca M, Bignami E, Sala A, Zangrillo A, Monaco F. Acute normovolemic hemodilution reduces allogeneic red blood cell transfusion in cardiac surgery: a systematic review and meta-analysis of randomized trials. Anesth Analg. 2017;124(3):743–52.

Article  Google Scholar 

Spahn DR, Leone BJ, Reves J, Pasch T. Cardiovascular and coronary physiology of acute isovolemic hemodilution: a review of nonoxygen-carrying and oxygen-carrying solutions. Anesth Analg. 1994;78:1000–21.

CAS  Article  Google Scholar 

Tan GM, Guinn NR, Frank SM, Shander A. Proceedings from the society for advancement of blood management annual meeting 2017: management dilemmas of the surgical patient-when blood is not an option. Anesth Analg. 2019;128:144–51.

Article  Google Scholar 

Aly Hassan A, Lochbuehler H, Frey L, Messmer K. Global tissue oxygenation during normovolaemic haemodilution in young children. Paediatr Anaesth. 1997;7:197–204.

CAS  Article  Google Scholar 

Fan F-C, Chen R, Schuessler G, Chien S. Effects of hematocrit variations on regional hemodynamics and oxygen transport in the dog. Am J Physiol-Heart Circ Physiol. 1980;238:H545–622.

CAS  Article  Google Scholar 

Jamnicki M, Kocian R, van der Linden P, Zaugg M, Spahn DR. Acute normovolemic hemodilution: physiology, limitations, and clinical use. J Cardiothorac Vasc Anesth. 2003;17:747–54.

Article  Google Scholar 

Jan KM, Chien S. Effect of hematocrit variations on coronary hemodynamics and oxygen utilization. Am J Physiol. 1977;233:H106–13.

CAS  PubMed  Google Scholar 

Schultz SG. William Harvey and the circulation of the blood: the birth of a scientific revolution and modern physiology. Physiology. 2002;17:175–80.

Article  Google Scholar 

Van Woerkens E, Trouwborst A, Duncker D, Koning M, Boomsma F, Verdouw P. Catecholamines and regional hemodynamics during isovolemic hemodilution in anesthetized pigs. J Appl Physiol. 1992;72:760–9.

Article  Google Scholar 

Tripette J, Alexy T, Hardy-Dessources MD, Mougenel D, Beltan E, Chalabi T, Chout R, Etienne-Julan M, Hue O, Meiselman HJ, Connes P. Red blood cell aggregation, aggregate strength and oxygen transport potential of blood are abnormal in both homozygous sickle cell anemia and sickle-hemoglobin C disease. Haematologica. 2009;94:1060–5.

Arya VK, Nagdeve NG, Kumar A, Thingnam SK, Dhaliwal RS. Comparison of hemodynamic changes after acute normovolemic hemodilution using Ringer’s lactate versus 5% albumin in patients on beta-blockers artery bypass surgery. J Cardiothorac Vasc Anesth. 2006;20:812–8.

CAS  Article  Google Scholar 

Ickx BE, Rigolet M, Van der Linden PJ. Cardiovascular and metabolic response to acute normovolemic anemia effects of anesthesia. Anesthesiology. 2000;93:1011–6.

CAS  Article  Google Scholar 

Spahn DR, Schmid ER, Seifert B, Pasch T. Hemodilution tolerance in patients with coronary artery disease who are receiving chronic beta-adrenergic blocker therapy. Anesth Analg. 1996;82:687–94.

CAS  PubMed  Google Scholar 

Levy PS, Kim SJ, Eckel PK, Chavez RO, Ismail EF, Gould SA, Ramez Salem M, Crystal GJ. Limit to cardiac compensation during acute isovolemic hemodilution: influence of coronary stenosis. Am J Physiol-Heart Circ Physiol. 1993;265(1):H340–9.

CAS  Article  Google Scholar 

Sung TY, Kwon MY, Muhammad HB, Kim JD, Kang WS, Kim SH, Kim DK, Yoon TG, Kim TY, Kim JH, Kang H. Placing a saline bag underneath the heart enhances transgastric transesophageal echocardiographic imaging during cardiac displacement for off-pump coronary artery bypass surgery. J Cardiothorac Vasc Anesth. 2014;28(1):42–8.

Article  Google Scholar 

Bogar L, Juricskay I, Kesmarky G, Kenyeres P, Toth K. Erythrocyte transport efficacy of human blood: a rheological point of view. Eur J Clin Investig. 2005;35:687–90.

CAS  Article  Google Scholar 

Dupuy-Fons C, Brun JF, Pellerin F, Laborde JC, Bardet L, Orsetti A, Janbon C. Relationships between blood rheology and transcutaneous oxygen pressure in peripheral occlusive arterial disease. Clin Hemorheol Microcirc. 1995;15(2):191–9.

Article  Google Scholar 

Jung JM, Lee DH, Kim KT, Choi MS, Cho YG, Lee HS, Choi SI, Lee SR, Kim DS. Reference intervals for whole blood viscosity using the analytical performance-evaluated scanning capillary tube viscometer. Clin Biochem. 2014;47(6):489–93.

CAS  Article  Google Scholar 

Kim D, Cho DJ, Cho YI. Reduced amputation rate with isovolemic hemodilution in critical limb ischemia patients. Clin Hemorheol Microcirc. 2017;67(2):197–208.

CAS  Article  Google Scholar 

Nemeth N, Alexy T, Furka A, Baskurt OK, Meiselman HJ, Furka I, Miko I. Inter-species differences in hematocrit to blood viscosity ratio. Biorheology. 2009;46(2):155–65.

CAS  Article  Google Scholar 

Lee BK, Durairaj A, Mehra A, Wenby RB, Meiselman HJ, Alexy T. Hemorheological abnormalities in stable angina and acute coronary syndromes. Clin Hemorheol Microcirc. 2008;39:43–51.

Article  Google Scholar 

Lee BK, Durairaj A, Mehra A, Wenby RB, Meiselman HJ, Alexy T. Microcirculatory dysfunction in cardiac syndrome X: role of abnormal blood rheology. Microcirculation. 2008;15:451–9.

CAS  Article  Google Scholar 

Noguchi KGY, Brunner E, Konietschke F. nparLD: an R software package for the nonparametric analysis of longitudinal data in factorial experiments. J Stat Softw. 2012;50:1–23.

Article  Google Scholar 

Eckmann DM, Bowers S, Stecker M, Cheung AT. Hematocrit, volume expander, temperature, and shear rate effects on blood viscosity. Anesth Analg. 2000;91:539–45.

CAS  Article  Google Scholar 

Lipowsky HH, Kovalcheck S, Zweifach BW. The distribution of blood rheological parameters in the microvasculature of cat mesentery. Circ Res. 1978;43:738–49.

CAS  Article  Google Scholar 

Yalcin O, Ortiz D, Williams AT, Johnson PC, Cabrales P. Perfusion pressure and blood flow determine microvascular apparent viscosity. Exp Physiol. 2015;100:977–87.

Article  Google Scholar 

Alexy T, Pais E, Armstrong JK, Meiselman HJ, Johnson CS, Fisher TC. Rheologic behavior of sickle and normal red blood cell mixtures in sickle plasma: implications for transfusion therapy. Transfusion. 2006;46:912–8.

Article  Google Scholar 

Zimmerman R, Tsai AG, Vázquez BY, Cabrales P, Hofmann A, Meier J, Shander A, Spahn DR, Friedman JM, Tartakovsky DM, Intaglietta M. Post-transfusion increase of hematocrit per se does not improve circulatory oxygen delivery due to increased blood viscosity. Anesth Analg. 2017;124(5):1547.

CAS  Article  Google Scholar 

Cho YI, Cho DJ, Rosenson RS. Endothelial shear stress and blood viscosity in peripheral arterial disease. Curr Atheroscler Rep. 2014;16:404.

Article  Google Scholar 

Spahn DR, Smith LR, Veronee CD, McRae RL, Hu WC, Menius AJ, Lowe JE, Leone BJ. Acute isovolemic hemodilution and blood transfusion: effects on regional function and metabolism in myocardium with compromised coronary blood flow. J Thorac Cardiovasc Surg. 1993;105(4):694–704.

CAS  Article  Google Scholar 

Licker M, Ellenberger C, Dierra J, Kalangos A, Diaper J, Morel D. Cardioprotective effects of acute normovolemic hemodilution in patients undergoing coronary artery bypass surgery. Chest. 2005;128:838–47.

Article  Google Scholar 

Egli GA, Zollinger A, Seifert B, Popovic D, Pasch T, Spahn DR. Effect of progressive haemodilution with hydroxyethyl starch, gelatin and albumin on blood coagulation. Br J Anaesth. 1997;78:684–9.

CAS  Article  Google Scholar 

Höfling B, von Restorff W, Holtz J, Bassenge E. Viscous and inertial fractions of total perfusion energy dissipation in the coronary circulation of thein situ perfused dog heart. Pflugers Arch. 1975;358:1–10.

Article  Google Scholar 

留言 (0)

沒有登入
gif