Metal implants on abdominal CT: does split-filter dual-energy CT provide additional value over iterative metal artifact reduction?

Boas FE, Fleischmann D (2012) CT artifacts: Causes and reduction techniques. Imaging Med 4:1–19 . doi: https://doi.org/10.2217/iim.12.13

Article  Google Scholar 

Andersson KM, Dahlgren CV, Reizenstein J, et al (2018) Evaluation of two commercial CT metal artifact reduction algorithms for use in proton radiotherapy treatment planning in the head and neck area. Med Phys 45:4329–4344 . doi: https://doi.org/10.1002/mp.13115

CAS  Article  PubMed  Google Scholar 

Bolstad K, Flatabø S, Aadnevik D, et al (2018) Metal artifact reduction in CT, a phantom study: subjective and objective evaluation of four commercial metal artifact reduction algorithms when used on three different orthopedic metal implants. Acta radiol 59:1110–1118 . doi: https://doi.org/10.1177/0284185117751278

Article  PubMed  Google Scholar 

Kidoh M, Nakaura T, Nakamura S, et al (2014) Reduction of dental metallic artefacts in CT: Value of a newly developed algorithm for metal artefact reduction (O-MAR). Clin Radiol 69:e11–e16 . doi: https://doi.org/10.1016/J.CRAD.2013.08.008

CAS  Article  PubMed  Google Scholar 

Maerz M, Mittermair P, Krauss A, et al (2016) Iterative metal artifact reduction improves dose calculation accuracy. Strahlentherapie und Onkol 192:403–413 . doi: https://doi.org/10.1007/s00066-016-0958-z

Article  Google Scholar 

Kim YJ, Cha JG, Kim H, et al (2019) Dual-energy and iterative metal artifact reduction for reducing artifacts due to metallic hardware: A loosening hip phantom study. Am J Roentgenol 212:1106–1111 . doi: https://doi.org/10.2214/AJR.18.20413

Article  Google Scholar 

Toso S, Laurent M, Lozeron ED, et al (2018) Iterative algorithms for metal artifact reduction in children with orthopedic prostheses: preliminary results. Pediatr Radiol 48:1884–1890 . doi: https://doi.org/10.1007/s00247-018-4217-6

Article  PubMed  Google Scholar 

Long Z, Bruesewitz MR, DeLone DR, et al (2018) Evaluation of projection- and dual-energy-based methods for metal artifact reduction in CT using a phantom study. J Appl Clin Med Phys 19:252–260 . doi: https://doi.org/10.1002/acm2.12347

Article  PubMed  PubMed Central  Google Scholar 

Katsura M, Sato J, Akahane M, et al (2018) Current and Novel Techniques for Metal Artifact Reduction at CT: Practical Guide for Radiologists. RadioGraphics 38:450–461 . doi: https://doi.org/10.1148/rg.2018170102

Article  PubMed  Google Scholar 

Siegel MJ, Kaza RK, Bolus DN, et al (2017) White paper of the Society of Computed Body Tomography and Magnetic Resonance on dual-energy CT, part 3: Vascular, cardiac, Pulmonary, and Musculoskeletal Applications. J Comput Assist Tomogr 41:1–7 . doi: https://doi.org/10.1097/RCT.0000000000000538

Article  PubMed  Google Scholar 

Bamberg F, Dierks A, Nikolaou K, et al (2011) Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol 21:1424–1429 . doi: https://doi.org/10.1007/s00330-011-2062-1

Article  PubMed  Google Scholar 

Lewis M, Reid K, Toms AP (2013) Reducing the effects of metal artefact using high keV monoenergetic reconstruction of dual energy CT (DECT) in hip replacements. Skeletal Radiol 42:275–282 . doi: https://doi.org/10.1007/s00256-012-1458-6

Article  PubMed  Google Scholar 

Siegel MJ, Kaza RK, Bolus DN, et al (2016) White paper of the Society of Computed Body Tomography and Magnetic Resonance on dual-energy CT, part 1: Technology and terminology. J Comput Assist Tomogr 40:841–845 . doi: https://doi.org/10.1097/RCT.0000000000000531

Article  PubMed  Google Scholar 

Zhou C, Zhao YE, Luo S, et al (2011) Monoenergetic imaging of dual-energy CT reduces artifacts from implanted metal orthopedic devices in patients with factures. Acad Radiol 18:1252–1257 . doi: https://doi.org/10.1016/j.acra.2011.05.009

Article  PubMed  Google Scholar 

Meinel FG, Bischoff B, Zhang Q, et al (2012) Metal artifact reduction by dual-energy computed tomography using energetic extrapolation: A systematically optimized protocol. Invest Radiol 47:406–414 . doi: https://doi.org/10.1097/RLI.0b013e31824c86a3

Article  PubMed  Google Scholar 

Guggenberger R, Winklhofer S, Osterhoff G, et al (2012) Metallic artefact reduction with monoenergetic dual-energy CT: systematic ex vivo evaluation of posterior spinal fusion implants from various vendors and different spine levels. Eur Radiol 22:2357–2364 . doi: https://doi.org/10.1007/s00330-012-2501-7

CAS  Article  PubMed  Google Scholar 

Filograna L, Magarelli N, Leone A, et al (2015) Value of monoenergetic dual-energy CT (DECT) for artefact reduction from metallic orthopedic implants in post-mortem studies. Skeletal Radiol 44:1287–1294 . doi: https://doi.org/10.1007/s00256-015-2155-z

Article  PubMed  Google Scholar 

Higashigaito K, Angst F, Runge VM, et al (2015) Metal Artifact Reduction in Pelvic Computed Tomography With Hip Prostheses. Invest Radiol 50:828–834 . doi: https://doi.org/10.1097/rli.0000000000000191

Article  PubMed  Google Scholar 

Komlosi P, Grady D, Smith JS, et al Evaluation of monoenergetic imaging to reduce metallic instrumentation artifacts in computed tomography of the cervical spine. J Neurosurg Spine 22:34–38

Article  Google Scholar 

Dong Y, Shi AJ, Wu JL, et al (2016) Metal artifact reduction using virtual monochromatic images for patients with pedicle screws implants on CT. Eur Spine J 25:1754–1763 . doi: https://doi.org/10.1007/s00586-015-4053-4

Article  PubMed  Google Scholar 

Wellenberg RHH, Hakvoort ET, Slump CH, et al (2018) Metal artifact reduction techniques in musculoskeletal CT-imaging. Eur. J. Radiol. 107:60–69

CAS  Article  Google Scholar 

Neuhaus V, Große Hokamp N, Abdullayev N, et al (2017) Metal artifact reduction by dual-layer computed tomography using virtual monoenergetic images. Eur J Radiol 93:143–148 . doi: https://doi.org/10.1016/j.ejrad.2017.05.013

Article  PubMed  Google Scholar 

Laukamp KR, Zopfs D, Lennartz S, et al (2019) Metal artifacts in patients with large dental implants and bridges: combination of metal artifact reduction algorithms and virtual monoenergetic images provides an approach to handle even strongest artifacts. Eur. Radiol. 1–11

Article  Google Scholar 

Neuhaus V, Grosse Hokamp N, Zopfs D, et al (2019) Reducing artifacts from total hip replacements in dual layer detector CT: Combination of virtual monoenergetic images and orthopedic metal artifact reduction. Eur J Radiol 111:14–20 . doi: https://doi.org/10.1016/j.ejrad.2018.12.008

Article  PubMed  Google Scholar 

Park J, Kim SH, Han JK (2019) Combined application of virtual monoenergetic high keV images and the orthopedic metal artifact reduction algorithm (O-MAR): effect on image quality. Abdom Radiol 44:756–765 . doi: https://doi.org/10.1007/s00261-018-1748-0

Article  Google Scholar 

Lee YH, Park KK, Song H-T, et al (2012) Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software. Eur Radiol 22:1331–1340 . doi: https://doi.org/10.1007/s00330-011-2370-5

Article  PubMed  Google Scholar 

Wang Y, Qian B, Li B, et al (2013) Metal artifacts reduction using monochromatic images from spectral CT: Evaluation of pedicle screws in patients with scoliosis. Eur J Radiol 82:e360–e366 . doi: https://doi.org/10.1016/j.ejrad.2013.02.024

Article  PubMed  Google Scholar 

De Crop A, Casselman J, Van Hoof T, et al (2015) Analysis of metal artifact reduction tools for dental hardware in CT scans of the oral cavity: kVp, iterative reconstruction, dual-energy CT, metal artifact reduction software: does it make a difference? Neuroradiology 57:841–849 . doi: https://doi.org/10.1007/s00234-015-1537-1

Article  PubMed  Google Scholar 

Han SC, Chung YE, Lee YH, et al (2014) Metal artifact reduction software used with abdominopelvic dual-energy CT of patients with metal hip prostheses: Assessment of image quality and clinical feasibility. 203:788–795 . doi: https://doi.org/10.2214/AJR.13.10980

Article  Google Scholar 

Euler A, Parakh A, Falkowski AL, et al (2016) Initial Results of a Single-Source Dual-Energy Computed Tomography Technique Using a Split-Filter: Assessment of Image Quality, Radiation Dose, and Accuracy of Dual-Energy Applications in an In Vitro and In Vivo Study. Invest Radiol 51:491–498 . doi: https://doi.org/10.1097/RLI.0000000000000257

CAS  Article  PubMed  Google Scholar 

Euler A, Obmann MM, Szucs-farkas Z, et al (2018) Comparison of image quality and radiation dose between split-filter dual-energy images and single-energy images in single-source abdominal CT. Eur Radiol 28:3405–3412 . doi: https://doi.org/10.1007/s00330-018-5338-x

Article  PubMed  Google Scholar 

Almeida IP, Schyns LEJR, Öllers MC, et al (2017) Dual-energy CT quantitative imaging: a comparison study between twin-beam and dual-source CT scanners. Med Phys 44:171–179 . doi: https://doi.org/10.1002/mp.12000

CAS  Article  PubMed  Google Scholar 

Lennartz S, Laukamp KR, Tandon Y, et al (2021) Abdominal vessel depiction on virtual triphasic spectral detector CT: initial clinical experience. Abdom Radiol 46:3501–3511 . doi: https://doi.org/10.1007/s00261-021-03001-2

Article  Google Scholar 

Yoo J, Lee JM, Yoon JH, et al (2021) Comparison of low kVp CT and dual-energy CT for the evaluation of hypervascular hepatocellular carcinoma. Abdom Radiol 46:3217–3226 . doi: https://doi.org/10.1007/S00261-020-02888-7/TABLES/4

Article  Google Scholar 

Lourenco PDM, Rawski R, Mohammed MF, et al (2018) Dual-energy CT iodine mapping and 40-keV monoenergetic applications in the diagnosis of acute bowel ischemia. Am J Roentgenol 211:564–570 . doi: https://doi.org/10.2214/AJR.18.19554

Article  Google Scholar 

Obmann MM, Punjabi G, Obmann VC, et al (2021) Dual-energy CT of acute bowel ischemia. Abdom Radiol. doi: https://doi.org/10.1007/s00261-021-03188-4

Article  Google Scholar 

Obmann MM, An C, Schaefer A, et al (2020) Improved sensitivity and reader confidence in CT colonography using dual-layer spectral CT: A phantom study. Radiology 297:99–107 . doi: https://doi.org/10.1148/radiol.2020200032

Article  PubMed  Google Scholar 

Anastasopoulos C, Reisert M, Kellner E (2017) “Nora Imaging”: A Web-Based Platform for Medical Imaging. Neuropediatrics 48:S1–S45 . doi: https://doi.org/10.1055/s-0037-1602977

Article  Google Scholar 

Große Hokamp N, Neuhaus V, Abdullayev N, et al (2017) Reduction of artifacts caused by orthopedic hardware in the spine in spectral detector CT examinations using virtual monoenergetic image reconstructions and metal-artifact-reduction algorithms. Skeletal Radiol. doi: https://doi.org/10.1007/s00256-017-2776-5

Article  PubMed  Google Scholar 

Fleiss JL, Cohen J (1973) The Equivalence of Weighted Kappa and the Intraclass Correlation Coefficient as Measures of Reliability. Educ Psychol Meas 33:613–619 . doi: https://doi.org/10.1177/001316447303300309

Article  Google Scholar 

Koo TK, Li MY (2016) A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med 15:155–163 . doi: https://doi.org/10.1016/J.JCM.2016.02.012

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif