Increasing cancer permeability by photodynamic priming: from microenvironment to mechanotransduction signaling

Valkenburg, K. C., de Groot, A. E., & Pienta, K. J. (2018). Targeting the tumour stroma to improve cancer therapy. Nature Reviews. Clinical Oncology, 15(6), 366–381. https://doi.org/10.1038/s41571-018-0007-1

Article  PubMed  PubMed Central  Google Scholar 

Hosein, A. N., Brekken, R. A., & Maitra, A. (2020). Pancreatic cancer stroma: An update on therapeutic targeting strategies. Nature Reviews. Gastroenterology & Hepatology, 17(8), 487–505. https://doi.org/10.1038/s41575-020-0300-1

Article  Google Scholar 

Adiseshaiah, P. P., Crist, R. M., Hook, S. S., & McNeil, S. E. (2016). Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer. Nature Reviews Clinical Oncology, 13(12), 750–765. https://doi.org/10.1038/nrclinonc.2016.119

CAS  Article  PubMed  Google Scholar 

Maeda, H. (2015). Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Advanced Drug Delivery Reviews, 91, 3–6. https://doi.org/10.1016/j.addr.2015.01.002

CAS  Article  PubMed  Google Scholar 

Olive, K. P., Jacobetz, M. A., Davidson, C. J., Gopinathan, A., McIntyre, D., Honess, D., & Tuveson, D. A. (2009). Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science (New York, N.Y.), 324(5933), 1457–1461. https://doi.org/10.1126/science.1171362

CAS  Article  Google Scholar 

Catenacci, D. V. T., Junttila, M. R., Karrison, T., Bahary, N., Horiba, M. N., Nattam, S. R., & Kindler, H. L. (2015). Randomized phase Ib/II study of gemcitabine plus placebo or vismodegib, a hedgehog pathway inhibitor, in patients with metastatic pancreatic cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 33(36), 4284–4292. https://doi.org/10.1200/JCO.2015.62.8719

CAS  Article  Google Scholar 

De Jesus-Acosta, A., Sugar, E. A., O’Dwyer, P. J., Ramanathan, R. K., Von Hoff, D. D., Rasheed, Z., & Laheru, D. A. (2020). Phase 2 study of vismodegib, a hedgehog inhibitor, combined with gemcitabine and nab-paclitaxel in patients with untreated metastatic pancreatic adenocarcinoma. British Journal of Cancer, 122(4), 498–505. https://doi.org/10.1038/s41416-019-0683-3

CAS  Article  PubMed  Google Scholar 

Kim, E. J., Sahai, V., Abel, E. V., Griffith, K. A., Greenson, J. K., Takebe, N., & Simeone, D. M. (2014). Pilot clinical trial of hedgehog pathway inhibitor GDC-0449 (vismodegib) in combination with gemcitabine in patients with metastatic pancreatic adenocarcinoma. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 20(23), 5937–5945. https://doi.org/10.1158/1078-0432.CCR-14-1269

CAS  Article  Google Scholar 

Lee, J. J., Perera, R. M., Wang, H., Wu, D.-C., Liu, X. S., Han, S., & Beachy, P. A. (2014). Stromal response to Hedgehog signaling restrains pancreatic cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 111(30), E3091-3100. https://doi.org/10.1073/pnas.1411679111

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hingorani, S. R., Zheng, L., Bullock, A. J., Seery, T. E., Harris, W. P., Sigal, D. S., & Hendifar, A. E. (2018). HALO 202: Randomized phase II study of PEGPH20 plus nab-paclitaxel/gemcitabine versus nab-paclitaxel/gemcitabine in patients with untreated, metastatic pancreatic ductal adenocarcinoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 36(4), 359–366. https://doi.org/10.1200/JCO.2017.74.9564

CAS  Article  Google Scholar 

Van Cutsem, E., Tempero, M. A., Sigal, D., Oh, D.-Y., Fazio, N., Macarulla, T., HALO 109-301 Investigators. (2020). Randomized phase III trial of pegvorhyaluronidase alfa with nab-paclitaxel plus gemcitabine for patients with hyaluronan-high metastatic pancreatic adenocarcinoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 38(27), 3185–3194. https://doi.org/10.1200/JCO.20.00590

Article  Google Scholar 

Ramanathan, R. K., McDonough, S. L., Philip, P. A., Hingorani, S. R., Lacy, J., Kortmansky, J. S., & Hochster, H. S. (2019). Phase IB/II randomized study of FOLFIRINOX plus pegylated recombinant human hyaluronidase versus FOLFIRINOX alone in patients with metastatic pancreatic adenocarcinoma: SWOG S1313. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 37(13), 1062–1069. https://doi.org/10.1200/JCO.18.01295

CAS  Article  Google Scholar 

Castano, A. P., Mroz, P., & Hamblin, M. R. (2006). Photodynamic therapy and anti-tumour immunity. Nature Reviews Cancer, 6(7), 535–545. https://doi.org/10.1038/nrc1894

CAS  Article  PubMed  PubMed Central  Google Scholar 

Dolmans, D. E. J. G. J., Fukumura, D., & Jain, R. K. (2003). Photodynamic therapy for cancer. Nature Reviews. Cancer, 3(5), 380–387. https://doi.org/10.1038/nrc1071

CAS  Article  PubMed  Google Scholar 

Celli, J. P., Spring, B. Q., Rizvi, I., Evans, C. L., Samkoe, K. S., Verma, S., & Hasan, T. (2010). Imaging and photodynamic therapy: Mechanisms, monitoring, and optimization. Chemical Reviews, 110(5), 2795–2838. https://doi.org/10.1021/cr900300p

CAS  Article  PubMed  PubMed Central  Google Scholar 

Araki, T., Ogawara, K., Suzuki, H., Kawai, R., Watanabe, T., Ono, T., & Higaki, K. (2015). Augmented EPR effect by photo-triggered tumor vascular treatment improved therapeutic efficacy of liposomal paclitaxel in mice bearing tumors with low permeable vasculature. Journal of Controlled Release: Official Journal of the Controlled Release Society, 200, 106–114. https://doi.org/10.1016/j.jconrel.2014.12.038

CAS  Article  Google Scholar 

Luo, D., Carter, K. A., Razi, A., Geng, J., Shao, S., Giraldo, D., & Lovell, J. F. (2016). Doxorubicin encapsulated in stealth liposomes conferred with light-triggered drug release. Biomaterials, 75, 193–202. https://doi.org/10.1016/j.biomaterials.2015.10.027

CAS  Article  PubMed  Google Scholar 

Luo, D., Carter, K. A., Molins, E. A. G., Straubinger, N. L., Geng, J., Shao, S., & Lovell, J. F. (2019). Pharmacokinetics and pharmacodynamics of liposomal chemophototherapy with short drug-light intervals. Journal of Controlled Release: Official Journal of the Controlled Release Society, 297, 39–47. https://doi.org/10.1016/j.jconrel.2019.01.030

CAS  Article  Google Scholar 

Huang, H.-C., Rizvi, I., Liu, J., Anbil, S., Kalra, A., Lee, H., & Hasan, T. (2018). Photodynamic priming mitigates chemotherapeutic selection pressures and improves drug delivery. Cancer Research, 78(2), 558–571. https://doi.org/10.1158/0008-5472.CAN-17-1700

CAS  Article  PubMed  Google Scholar 

Luo, D., Carter, K. A., Geng, J., He, X., & Lovell, J. F. (2018). Short drug-light intervals improve liposomal chemophototherapy in mice bearing MIA PaCa-2 xenografts. Molecular Pharmaceutics, 15(9), 3682–3689. https://doi.org/10.1021/acs.molpharmaceut.8b00052

CAS  Article  PubMed  Google Scholar 

Sorrin, A. J., Kemal Ruhi, M., Ferlic, N. A., Karimnia, V., Polacheck, W. J., Celli, J. P., & Rizvi, I. (2020). Photodynamic therapy and the biophysics of the tumor microenvironment. Photochemistry and Photobiology, 96(2), 232–259. https://doi.org/10.1111/php.13209

CAS  Article  PubMed  PubMed Central  Google Scholar 

Obaid, G., Bano, S., Mallidi, S., Broekgaarden, M., Kuriakose, J., Silber, Z., & Hasan, T. (2019). Impacting pancreatic cancer therapy in heterotypic in vitro organoids and in vivo tumors with specificity-tuned, NIR-activable photoimmunonanoconjugates: Towards conquering desmoplasia? Nano letters, 19(11), 7573–7587. https://doi.org/10.1021/acs.nanolett.9b00859

CAS  Article  PubMed  PubMed Central  Google Scholar 

Düzgüneş, N., Piskorz, J., Skupin-Mrugalska, P., Goslinski, T., Mielcarek, J., & Konopka, K. (2018). Photodynamic therapy of cancer with liposomal photosensitizers. Therapeutic Delivery, 9(11), 823–832. https://doi.org/10.4155/tde-2018-0050

CAS  Article  PubMed  Google Scholar 

Broekgaarden, M., Weijer, R., van Gulik, T. M., Hamblin, M. R., & Heger, M. (2015). Tumor cell survival pathways activated by photodynamic therapy: A molecular basis for pharmacological inhibition strategies. Cancer Metastasis Reviews, 34(4), 643–690. https://doi.org/10.1007/s10555-015-9588-7

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kushibiki, T., Hirasawa, T., Okawa, S., & Ishihara, M. (2013). Responses of cancer cells induced by photodynamic therapy. Journal of Healthcare Engineering, 4(1), 87–108. https://doi.org/10.1260/2040-2295.4.1.87

Article  PubMed  Google Scholar 

Li, X., Lovell, J. F., Yoon, J., & Chen, X. (2020). Clinical development and potential of photothermal and photodynamic therapies for cancer. Nature Reviews. Clinical Oncology, 17(11), 657–674. https://doi.org/10.1038/s41571-020-0410-2

Article  PubMed  Google Scholar 

Willenbrink, T. J., Ruiz, E. S., Cornejo, C. M., Schmults, C. D., Arron, S. T., & Jambusaria-Pahlajani, A. (2020). Field cancerization: Definition, epidemiology, risk factors, and outcomes. Journal of the American Academy of Dermatology, 83(3), 709–717. https://doi.org/10.1016/j.jaad.2020.03.126

CAS  Article  PubMed  Google Scholar 

Jansen, M. H. E., Kessels, J. P. H. M., Nelemans, P. J., Kouloubis, N., Arits, A. H. M. M., van Pelt, H. P. A., & Mosterd, K. (2019). Randomized trial of four treatment approaches for actinic keratosis. The New England Journal of Medicine, 380(10), 935–946. https://doi.org/10.1056/NEJMoa1811850

CAS  Article  PubMed  Google Scholar 

Wollina, U., Gaber, B., & Koch, A. (2018). Photodynamic treatment with nanoemulsified 5-aminolevulinic acid and narrow band red light for field cancerization due to occupational exposure to ultraviolet light irradiation. Georgian Medical News, 274, 138–143.

Google Scholar 

Haque, T., Rahman, K. M., Thurston, D. E., Hadgraft, J., & Lane, M. E. (2015). Topical therapies for skin cancer and actinic keratosis. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 77, 279–289. https://doi.org/10.1016/j.ejps.2015.06.013

CAS  Article  Google Scholar 

Stewart, T. J., Farrell, J., Crainic, O., & Rosen, R. H. (2020). A large series of pigmented Bowen’s disease. International Journal of Dermatology, 59(9), e316–e317. https://doi.org/10.1111/ijd.14977

Article  PubMed  Google Scholar 

de Faria, C. M. G., Barrera-Patiño, C. P., Santana, J. P. P., da Silva de Avó, L. R., & Bagnato, V. S. (2021). Tumor radiosensitization by photobiomodulation. Journal of Photochemistry and Photobiology. B, Biology, 225, 112349. https://doi.org/10.1016/j.jphotobiol.2021.112349

CAS  Article  PubMed  Google Scholar 

Finlayson, L., Barnard, I. R. M., McMillan, L., Ibbotson, S. H., Brown, C. T. A., Eadie, E., & Wood, K. (2022). Depth penetration of light into skin as a function of wavelength from 200 to 1000 nm. Photochemistry and Photobiology, 98(4), 974–981. https://doi.org/10.1111/php.13550

CAS  Article  PubMed  Google Scholar 

Samarasinghe, V., & Madan, V. (2012). Nonmelanoma skin cancer. Journal of Cutaneous and Aesthetic Surgery, 5(1), 3–10. https://doi.org/10.4103/0974-2077.94323

Article  PubMed 

留言 (0)

沒有登入
gif