A Pattern to Link Adenosine Signaling, Circadian System, and Potential Final Common Pathway in the Pathogenesis of Major Depressive Disorder

Mrazek F, Onderkova J, Szotkowski T et al (2014) Somatic mutation in acute myelogenous leukemia cells imitate novel germline HLA-A allele: a case report. Tissue Antigens 83:414–417. https://doi.org/10.1111/tan.12362

CAS  Article  PubMed  Google Scholar 

Dallaspezia S, Suzuki M, Benedetti F (2015) Chronobiological therapy for mood disorders. Curr Psychiatry Rep 17:95. https://doi.org/10.1007/s11920-015-0633-6

Article  PubMed  Google Scholar 

van Calker D, Biber K, Domschke K et al (2019) The role of adenosine receptors in mood and anxiety disorders. J Neurochem 151:11–27. https://doi.org/10.1111/jnc.14841

CAS  Article  PubMed  Google Scholar 

Gomes JI, Farinha-Ferreira M, Rei N et al (2021) Of adenosine and the blues: the adenosinergic system in the pathophysiology and treatment of major depressive disorder. Pharmacol Res 163:105363. https://doi.org/10.1016/j.phrs.2020.105363

CAS  Article  PubMed  Google Scholar 

Szopa A, Socala K, Serefko A et al (2021) Purinergic transmission in depressive disorders. Pharmacol Ther 224:107821. https://doi.org/10.1016/j.pharmthera.2021.107821

CAS  Article  PubMed  Google Scholar 

Reichert CF, Maire M, Schmidt C, Cajochen C (2016) Sleep-wake regulation and its impact on working memory performance: the role of adenosine. Biology (Basel) 5(1). https://doi.org/10.3390/biology5010011

Lindberg D, Andres-Beck L, Jia YF et al (2018) Purinergic signaling in neuron-astrocyte interactions, circadian rhythms, and alcohol use disorder. Front Physiol 9:9. https://doi.org/10.3389/fphys.2018.00009

Article  PubMed  PubMed Central  Google Scholar 

Wang XL LX, Yuan K, Han Y, Xue YY, Meng SQ, Li SX (2021) Clock genes Period1 and Period2 in the hippocampal CA1 mediate depression-like behaviors and rapid antidepressant response. BioRxiv.  https://doi.org/10.1101/2021.08.14.456364

Serchov T, Clement HW, Schwarz MK et al (2015) Increased signaling via adenosine A1 receptors, sleep deprivation, imipramine, and ketamine inhibit depressive-like behavior via induction of Homer1a. Neuron 87:549–562. https://doi.org/10.1016/j.neuron.2015.07.010

CAS  Article  PubMed  PubMed Central  Google Scholar 

Serchov T, Heumann R, van Calker D et al (2016) Signaling pathways regulating Homer1a expression: implications for antidepressant therapy. Biol Chem 397:207–214. https://doi.org/10.1515/hsz-2015-0267

CAS  Article  PubMed  Google Scholar 

Serchov T, Schwarz I, Theiss A et al (2020) Enhanced adenosine A1 receptor and Homer1a expression in hippocampus modulates the resilience to stress-induced depression-like behavior. Neuropharmacology 162:107834. https://doi.org/10.1016/j.neuropharm.2019.107834

CAS  Article  PubMed  Google Scholar 

Holz A, Mulsch F, Schwarz MK et al (2019) Enhanced mGlu5 signaling in excitatory neurons promotes rapid antidepressant effects via AMPA receptor activation. Neuron 104(338–352):e337. https://doi.org/10.1016/j.neuron.2019.07.011

CAS  Article  Google Scholar 

Sato S, Bunney BG, Vawter MP et al (2020) Homer1a undergoes bimodal transcriptional regulation by CREB and the circadian clock. Neuroscience 434:161–170. https://doi.org/10.1016/j.neuroscience.2020.03.031

CAS  Article  PubMed  Google Scholar 

Pedata F, Dettori I, Coppi E et al (2016) Purinergic signalling in brain ischemia. Neuropharmacology 104:105–130. https://doi.org/10.1016/j.neuropharm.2015.11.007

CAS  Article  PubMed  Google Scholar 

Moidunny S, Vinet J, Wesseling E et al (2012) Adenosine A2B receptor-mediated leukemia inhibitory factor release from astrocytes protects cortical neurons against excitotoxicity. J Neuroinflammation 9:198. https://doi.org/10.1186/1742-2094-9-198

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hines DJ, Schmitt LI, Hines RM et al (2013) Antidepressant effects of sleep deprivation require astrocyte-dependent adenosine mediated signaling. Transl Psychiatry 3:e212. https://doi.org/10.1038/tp.2012.136

CAS  Article  PubMed  PubMed Central  Google Scholar 

Serchov T, Atas HC, Normann C et al (2012) Genetically controlled upregulation of adenosine A(1) receptor expression enhances the survival of primary cortical neurons. Mol Neurobiol 46:535–544. https://doi.org/10.1007/s12035-012-8321-6

CAS  Article  PubMed  Google Scholar 

Lewis KS, -Smith KG, Forty L, et al (2017) Sleep loss as a trigger of mood episodes in bipolar disorder: individual differences based on diagnostic subtype and gender. Br J Psychiatry 211:169–174. https://doi.org/10.1192/bjp.bp.117.202259

Article  PubMed  PubMed Central  Google Scholar 

Gubert C, Jacintho Moritz CE, Vasconcelos-Moreno MP et al (2016) Peripheral adenosine levels in euthymic patients with bipolar disorder. Psychiatry Res 246:421–426. https://doi.org/10.1016/j.psychres.2016.10.007

CAS  Article  PubMed  Google Scholar 

Coelho JE, Alves P, Canas PM et al (2014) Overexpression of adenosine A2A receptors in rats: effects on depression, locomotion, and anxiety. Front Psychiatry 5:67. https://doi.org/10.3389/fpsyt.2014.00067

Article  PubMed  PubMed Central  Google Scholar 

El Yacoubi M, Ledent C, Parmentier M et al (2001) Adenosine A2A receptor antagonists are potential antidepressants: evidence based on pharmacology and A2A receptor knockout mice. Br J Pharmacol 134:68–77. https://doi.org/10.1038/sj.bjp.0704240

Article  PubMed  PubMed Central  Google Scholar 

El Yacoubi M, Costentin J, Vaugeois JM (2003) Adenosine A2A receptors and depression. Neurology 61:S82-87. https://doi.org/10.1212/01.wnl.0000095220.87550.f6

Article  PubMed  Google Scholar 

Yamada K, Kobayashi M, Shiozaki S et al (2014) Antidepressant activity of the adenosine A2A receptor antagonist, istradefylline (KW-6002) on learned helplessness in rats. Psychopharmacology 231:2839–2849. https://doi.org/10.1007/s00213-014-3454-0

CAS  Article  PubMed  Google Scholar 

Tsai SJ, Hong CJ, Hou SJ et al (2006) Association study of adenosine A2a receptor (1976C>T) genetic polymorphism and mood disorders and age of onset. Psychiatr Genet 16:185. https://doi.org/10.1097/01.ypg.0000218627.26622.eb

Article  PubMed  Google Scholar 

Bartoli F, Clerici M, Carra G (2020) Purinergic system and suicidal behavior: exploring the link between adenosine A2A receptors and depressive/impulsive features. Mol Psychiatry 25:512–513. https://doi.org/10.1038/s41380-018-0057-x

CAS  Article  PubMed  Google Scholar 

Lucas M, O’Reilly EJ, Pan A et al (2014) Coffee, caffeine, and risk of completed suicide: results from three prospective cohorts of American adults. World J Biol Psychiatry 15:377–386. https://doi.org/10.3109/15622975.2013.795243

Article  PubMed  Google Scholar 

Albrecht U (2012) Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 74:246–260. https://doi.org/10.1016/j.neuron.2012.04.006

CAS  Article  PubMed  Google Scholar 

Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941. https://doi.org/10.1038/nature00965

CAS  Article  PubMed  Google Scholar 

Preitner N, Damiola F, Lopez-Molina L et al (2002) The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–260. https://doi.org/10.1016/s0092-8674(02)00825-5

CAS  Article  PubMed  Google Scholar 

Sato TK, Panda S, Miraglia LJ et al (2004) A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43:527–537. https://doi.org/10.1016/j.neuron.2004.07.018

CAS  Article  PubMed  Google Scholar 

McClung CA (2013) How might circadian rhythms control mood? Let me count the ways. Biol Psychiatry 74:242–249. https://doi.org/10.1016/j.biopsych.2013.02.019

Article  PubMed  PubMed Central  Google Scholar 

Ketchesin KD, Becker-Krail D, McClung CA (2020) Mood-related central and peripheral clocks. Eur J Neurosci 51:326–345. https://doi.org/10.1111/ejn.14253

Article  PubMed  Google Scholar 

Wang XL, Wang DQ, Jiao FC et al (2021) Diurnal rhythm disruptions induced by chronic unpredictable stress relate to depression-like behaviors in rats. Pharmacol Biochem Behav 204:173156. https://doi.org/10.1016/j.pbb.2021.173156

CAS  Article  PubMed  Google Scholar 

Mendoza J (2019) Circadian insights into the biology of depression: Symptoms, treatments and animal models. Behav Brain Res 376:112186. https://doi.org/10.1016/j.bbr.2019.112186

Article  PubMed  Google Scholar 

Chellappa SL (2020) Circadian misalignment: a biological basis for mood vulnerability in shift work. Eur J Neurosci 52:3846–3850. https://doi.org/10.1111/ejn.14871

Article  PubMed  Google Scholar 

Mendoza J, Vanotti G (2019) Circadian neurogenetics of mood disorders. Cell Tissue Res 377:81–94. https://doi.org/10.1007/s00441-019-03033-7

Article  PubMed  Google Scholar 

Gutiérrez-Zotes A, Díaz-Peña R, Costas J et al (2020) Interaction between the functional SNP rs2070951 in NR3C2 gene and high levels of plasma corticotropin-releasing hormone associates to postpartum depression. Arch Womens Ment Health 23:413–420. https://doi.org/10.1007/s00737-019-00989-x

Article  PubMed  Google Scholar 

Orozco-Solis R, Montellier E, Aguilar-Arnal L et al (2017) A circadian genomic signature common to ketamine and sleep deprivation in the anterior cingulate cortex. Biol Psychiatry 82:351–360. https://doi.org/10.1016/j.biopsych.2017.02.1176

CAS  Article  PubMed  PubMed Central  Google Scholar 

Duncan WC, Jr., Slonena E, Hejazi

留言 (0)

沒有登入
gif