Neuroprotective Effects of a Cardioplegic Combination (Adenosine, Lidocaine, and Magnesium) in an Ischemic Stroke Model

Campbell BCV, De Silva DA, Macleod MR, Coutts SB, Schwamm LH, Davis SM, Donnan GA (2019) Ischaemic stroke. Nat Rev Dis Primers 5(1):70. https://doi.org/10.1038/s41572-019-0118-8

Article  PubMed  Google Scholar 

Matei N, Camara J, Zhang JH (2020) The next step in the treatment of stroke. Front Neurol 11:582605. https://doi.org/10.3389/fneur.2020.582605

Article  PubMed  Google Scholar 

Dobson GP, Letson HL (2016) Adenosine, lidocaine, and Mg2+ (ALM): from cardiac surgery to combat casualty care–teaching old drugs new tricks. J Trauma Acute Care Surg 80(1):135–145. https://doi.org/10.1097/TA.0000000000000881

CAS  Article  PubMed  Google Scholar 

Santa-Maria AR, Walter FR, Valkai S, Bras AR, Meszaros M, Kincses A, Klepe A, Gaspar D et al. (2019) Lidocaine turns the surface charge of biological membranes more positive and changes the permeability of blood-brain barrier culture models. Biochim Biophys Acta Biomembr 1861(9):1579–1591. https://doi.org/10.1016/j.bbamem.2019.07.008

CAS  Article  PubMed  Google Scholar 

Bynoe MS, Viret C, Yan A, Kim DG (2015) Adenosine receptor signaling: a key to opening the blood-brain door. Fluids Barriers CNS 12:20. https://doi.org/10.1186/s12987-015-0017-7

CAS  Article  PubMed  PubMed Central  Google Scholar 

Letson HL, Dobson GP (2018) Adenosine, lidocaine, and Mg2+ (ALM) resuscitation fluid protects against experimental traumatic brain injury. J Trauma Acute Care Surg 84(6):908–916. https://doi.org/10.1097/TA.0000000000001874

CAS  Article  PubMed  Google Scholar 

Vinten-Johansen J (2013) Adenosine-lidocaine-magnesium non-depolarizing cardioplegia: moving forward from bench to bedside. Int J Cardiol 166(2):537–538. https://doi.org/10.1016/j.ijcard.2012.09.193

Article  PubMed  Google Scholar 

Owen CM, Asopa S, Smart NA, King N (2020) Microplegia in cardiac surgery: systematic review and meta-analysis. J Card Surg 35(10):2737–2746. https://doi.org/10.1111/jocs.14895

Article  PubMed  Google Scholar 

Francica A, Vaccarin A, Dobson GP, Rossetti C, Gardellini J, Faggian G, Onorati F (2021) Short-term outcome of adenosine-lidocaine-magnesium polarizing cardioplegia in humans. Eur J Cardiothorac Surg. https://doi.org/10.1093/ejcts/ezab466

Article  PubMed  Google Scholar 

Granfeldt A, Letson HL, Dobson GP, Shi W, Vinten-Johansen J, Tonnesen E (2014) Adenosine, lidocaine and Mg2+ improves cardiac and pulmonary function, induces reversible hypotension and exerts anti-inflammatory effects in an endotoxemic porcine model. Crit Care 18(6):682. https://doi.org/10.1186/s13054-014-0682-y

Article  PubMed  PubMed Central  Google Scholar 

Griffin MJ, Letson HL, Dobson GP (2014) Adenosine, lidocaine and Mg2+ (ALM) induces a reversible hypotensive state, reduces lung edema and prevents coagulopathy in the rat model of polymicrobial sepsis. J Trauma Acute Care Surg 77(3):471–478. https://doi.org/10.1097/TA.0000000000000361

CAS  Article  PubMed  Google Scholar 

Conner J, Lammers D, Holtestaul T, Jones I, Kuckelman J, Letson H, Dobson G, Eckert M et al. (2021) Combatting ischemia reperfusion injury from resuscitative endovascular balloon occlusion of the aorta using adenosine, lidocaine and magnesium: a pilot study. J Trauma Acute Care Surg 91(6):995–1001. https://doi.org/10.1097/TA.0000000000003388

CAS  Article  PubMed  Google Scholar 

Gubskiy IL, Namestnikova DD, Cherkashova EA, Chekhonin VP, Baklaushev VP, Gubsky LV, Yarygin KN (2018) MRI guiding of the middle cerebral artery occlusion in rats aimed to improve stroke modeling. Transl Stroke Res 9(4):417–425. https://doi.org/10.1007/s12975-017-0590-y

CAS  Article  PubMed  Google Scholar 

Xu L, Ding L, Su Y, Shao R, Liu J, Huang Y (2019) Neuroprotective effects of curcumin against rats with focal cerebral ischemia-reperfusion injury. Int J Mol Med 43(4):1879–1887. https://doi.org/10.3892/ijmm.2019.4094

CAS  Article  PubMed  Google Scholar 

Valentim AM, Guedes SR, Pereira AM, Antunes LM (2016) Euthanasia using gaseous agents in laboratory rodents. Lab Anim 50(4):241–253. https://doi.org/10.1177/0023677215618618

CAS  Article  PubMed  Google Scholar 

Shahjouei S, Cai PY, Ansari S, Sharififar S, Azari H, Ganji S, Zand R (2016) Middle cerebral artery occlusion model of stroke in rodents: a step-by-step approach. J Vasc Interv Neurol 8(5):1–8

PubMed  PubMed Central  Google Scholar 

Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

CAS  Article  Google Scholar 

Yoo SY, Yoo JY, Kim HB, Baik TK, Lee JH, Woo RS (2019) Neuregulin-1 protects neuronal cells against damage due to CoCl2-induced hypoxia by suppressing hypoxia-inducible factor-1alpha and P53 in SH-SY5Y cells. Int Neurourol J 23(Suppl 2):S111-118. https://doi.org/10.5213/inj.1938190.095

Article  PubMed  PubMed Central  Google Scholar 

Collaborators GBDS (2021) Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol 20(10):795–820. https://doi.org/10.1016/S1474-4422(21)00252-0

Article  Google Scholar 

Herpich F, Rincon F (2020) Management of acute ischemic stroke. Crit Care Med 48(11):1654–1663. https://doi.org/10.1097/CCM.0000000000004597

Article  PubMed  PubMed Central  Google Scholar 

Kuczynski AM, Marzoughi S, Al Sultan AS, Colbourne F, Menon BK, van Es A, Berez AL, Goyal M et al. (2020) Therapeutic hypothermia in acute ischemic stroke-a systematic review and meta-analysis. Curr Neurol Neurosci Rep 20(5):13. https://doi.org/10.1007/s11910-020-01029-3

Article  PubMed  Google Scholar 

Kuczynski AM, Ospel JM, Demchuk AM, Goyal M, Mitha AP, Almekhlafi MA (2020) Therapeutic hypothermia in patients with malignant ischemic stroke and hemicraniectomy-a systematic review and meta-analysis. World Neurosurg 141:e677–e685. https://doi.org/10.1016/j.wneu.2020.05.277

Article  PubMed  Google Scholar 

Ma J, Ma Y, Shuaib A, Winship IR (2020) Improved collateral flow and reduced damage after remote ischemic perconditioning during distal middle cerebral artery occlusion in aged rats. Sci Rep 10(1):12392. https://doi.org/10.1038/s41598-020-69122-8

CAS  Article  PubMed  PubMed Central  Google Scholar 

Yao Y, Zhang Y, Liao X, Yang R, Lei Y, Luo J (2020) Potential therapies for cerebral edema after ischemic stroke: a mini review. Front Aging Neurosci 12:618819. https://doi.org/10.3389/fnagi.2020.618819

CAS  Article  PubMed  Google Scholar 

Howell JA, Bidwell GL 3rd (2020) Targeting the NF-kappaB pathway for therapy of ischemic stroke. Ther Deliv 11(2):113–123. https://doi.org/10.4155/tde-2019-0075

CAS  Article  PubMed  Google Scholar 

Lakhan SE, Kirchgessner A, Hofer M (2009) Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med 7:97. https://doi.org/10.1186/1479-5876-7-97

CAS  Article  PubMed  PubMed Central  Google Scholar 

Francica A, Tonelli F, Rossetti C, Tropea I, Luciani GB, Faggian G, Dobson GP, Onorati F (2021) Cardioplegia between evolution and revolution: from depolarized to polarized cardiac arrest in adult cardiac surgery. J Clin Med 10(19). https://doi.org/10.3390/jcm10194485

Caltana L, Merelli A, Lazarowski A, Brusco A (2009) Neuronal and glial alterations due to focal cortical hypoxia induced by direct cobalt chloride (CoCl2) brain injection. Neurotox Res 15(4):348–358. https://doi.org/10.1007/s12640-009-9038-9

CAS  Article  PubMed  Google Scholar 

Jones SM, Novak AE, Elliott JP (2013) The role of HIF in cobalt-induced ischemic tolerance. Neuroscience 252:420–430. https://doi.org/10.1016/j.neuroscience.2013.07.060

CAS  Article  PubMed  Google Scholar 

Tripathi VK, Subramaniyan SA, Hwang I (2019) Molecular and cellular response of co-cultured cells toward cobalt chloride (CoCl2)-induced hypoxia. ACS Omega 4(25):20882–20893. https://doi.org/10.1021/acsomega.9b01474

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lopez MS, Vemuganti R (2018) Modeling transient focal ischemic stroke in rodents by intraluminal filament method of middle cerebral artery occlusion. Methods Mol Biol 1717:101–113. https://doi.org/10.1007/978-1-4939-7526-6_9

CAS  Article  PubMed  Google Scholar 

Larpthaveesarp A, Gonzalez FF (2017) Transient middle cerebral artery occlusion model of neonatal stroke in P10 rats. J Vis Exp (122). https://doi.org/10.3791/54830

Liu F, McCullough LD (2014) The middle cerebral artery occlusion model of transient focal cerebral ischemia. Methods Mol Biol 1135:81–93. https://doi.org/10.1007/978-1-4939-0320-7_7

CAS  Article  PubMed  Google Scholar 

Komatsu T, Ohta H, Motegi H, Hata J, Terawaki K, Koizumi M, Muta K, Okano HJ et al. (2021) A novel model of ischemia in rats with middle cerebral artery occlusion using a microcatheter and zirconia ball under fluoroscopy. Sci Rep 11(1):12806. https://doi.org/10.1038/s41598-021-92321-w

CAS  Article  PubMed  PubMed Central  Google Scholar 

Liu F, McCullough LD (2011) Middle cerebral artery occlusion model in rodents: methods and potential pitfalls. J Biomed Biotechnol 2011:464701. https://doi.org/10.1155/2011/464701

Article  PubMed  PubMed Central  Google Scholar 

Selvamani A, Sohrabji F (2010) The neurotoxic effects of estrogen on ischemic stroke in older female rats is associated with age-dependent loss of insulin-like growth factor-1. J Neurosci 30(20):6852–6861. https://doi.org/10.1523/JNEUROSCI.0761-10.2010

CAS  Article  PubMed  PubMed Central  Google Scholar 

Vitt JR, Trillanes M, Hemphill JC 3rd (2019) Management of blood pressure during and after recanalization therapy for acute ischemic stroke. Front Neurol 10:138. https://doi.org/10.3389/fneur.2019.00138

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif