Non-invasive In Vivo Brain Astrogenesis and Astrogliosis Quantification Using a Far-red E2-Crimson Transgenic Reporter Mouse

Lauber DT, Fülöp A, Kovács T, Szigeti K, Máthé D, Szijártó A (2017) State of the art in vivo imaging techniques for laboratory animals. Lab Anim 51(5):465–478. https://doi.org/10.1177/0023677217695852

CAS  Article  Google Scholar 

Dall’Ara E et al (2016) Longitudinal imaging of the ageing mouse. Mech Ageing Dev. 160:93–116. https://doi.org/10.1016/j.mad.2016.08.001

Article  PubMed  Google Scholar 

Sato A, Klaunberg B, Tolwani R (2004) In vivo bioluminescence imaging. Comp Med 54(6):631–634

CAS  PubMed  Google Scholar 

Luker KE, Luker GD (2010) Bioluminescence imaging of reporter mice for studies of infection and inflammation. Antiviral Res 86(1):93–100. https://doi.org/10.1016/j.antiviral.2010.02.002

CAS  Article  PubMed  PubMed Central  Google Scholar 

Patterson AP, Booth SA, Saba R, Patterson AP, Booth SA, Saba R (2014) The emerging use of in vivo optical imaging in the study of neurodegenerative diseases. Biomed Res Int 2014:1–14. https://doi.org/10.1155/2014/401306

CAS  Article  Google Scholar 

Badr CE (2014) Bioluminescence imaging: basics and practical limitations. Methods Mol Biol Clifton 1098(August). https://doi.org/10.1007/978-1-62703-718-1

Aswendt M, Adamczak J, Couillard-Despres S, Hoehn M (2013) Boosting bioluminescence neuroimaging: an optimized protocol for brain studies. PLoS One 8(2):e55662. https://doi.org/10.1371/journal.pone.0055662

CAS  Article  PubMed  PubMed Central  Google Scholar 

Leblond F, Davis SC, Valdés PA, Pogue BW (2010) Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications. J Photochem Photobiol B 98(1):77–94. https://doi.org/10.1016/j.jphotobiol.2009.11.007

CAS  Article  PubMed  Google Scholar 

Luker KE et al (2015) Comparative study reveals better far-red fluorescent protein for whole body imaging. Sci Rep 5:1–9. https://doi.org/10.1038/srep10332

CAS  Article  Google Scholar 

Kredel S et al (2008) Optimized and far-red-emitting variants of fluorescent protein eqFP611. Chem Biol 15(3):224–233. https://doi.org/10.1016/j.chembiol.2008.02.008

CAS  Article  PubMed  Google Scholar 

Richie CT et al (2017) Near-infrared fluorescent protein iRFP713 as a reporter protein for optogenetic vectors, a transgenic Cre-reporter rat, and other neuronal studies. J Neurosci Methods 284:1–14. https://doi.org/10.1016/j.jneumeth.2017.03.020

CAS  Article  PubMed  PubMed Central  Google Scholar 

Montecinos-Franjola F, Lin JY, Rodriguez EA (2020) Fluorescent proteins for in vivo imaging, where’s the biliverdin? Biochem Soc Trans 48(6):2657–2667. https://doi.org/10.1042/BST20200444

CAS  Article  PubMed  Google Scholar 

Strack RL, Hein B, Bhattacharyya D, Hell SW, Keenan RJ, Glick BS (2009) A rapidly maturing far-red derivative of DsRed-Express2 for whole-cell labeling. Biochemistry 48(35):8279–8281. https://doi.org/10.1021/bi900870u

Article  PubMed  Google Scholar 

Zhu L, Ramboz S, Hewitt D, Boring L, Grass DS, Purchio AF (2004) Non-invasive imaging of GFAP expression after neuronal damage in mice. Neurosci Lett 367(2):210–212. https://doi.org/10.1016/j.neulet.2004.06.020

CAS  Article  PubMed  Google Scholar 

Lalancette-Hbert M, Phaneuf D, Soucy G, Weng YC, Kriz J (2009) Live imaging of toll-like receptor 2 response in cerebral ischaemia reveals a role of olfactory bulb microglia as modulators of inflammation. Brain 132(4):940–954. https://doi.org/10.1093/brain/awn345

Article  Google Scholar 

Inoue Y, Kiryu S, Watanabe M, Tojo A, Ohtomo K (2010) Timing of imaging after D-luciferin injection affects the longitudinal assessment of tumor growth using in vivo bioluminescence imaging. Int J Biomed Imaging 2010. https://doi.org/10.1155/2010/471408

Oakley H et al (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s Disease mutations: potential factors in amyloid plaque formation. J Neurosci 26(40):10129–10140. https://doi.org/10.1523/JNEUROSCI.1202-06.2006

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lee Y, Messing A, Su M, Brenner M (2008) GFAP promoter elements required for region-specific and astrocyte-specific expression. Glia 56(5):481–493. https://doi.org/10.1002/glia.20622

Article  PubMed  Google Scholar 

Griffin JM, Fackelmeier B, Fong DM, Mouravlev A, Young D, O’Carroll SJ (2019) Astrocyte-selective AAV gene therapy through the endogenous GFAP promoter results in robust transduction in the rat spinal cord following injury. Gene Ther 26(5):198–210. https://doi.org/10.1038/s41434-019-0075-6

CAS  Article  PubMed  PubMed Central  Google Scholar 

Nolte C et al (2001) GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 33(1):72–86. https://doi.org/10.1002/1098-1136(20010101)33:1%3c72::AID-GLIA1007%3e3.0.CO;2-A

CAS  Article  PubMed  Google Scholar 

Kostoula C et al (2018) Development of in vivo imaging tools for investigating astrocyte activation in epileptogenesis. Mol Neurobiol 55(5):4463–4472. https://doi.org/10.1007/s12035-017-0660-x

CAS  Article  PubMed  Google Scholar 

Ho G, Zhang C, Zhuo L (2007) Non-invasive imaging of transgenic GFP expression in neonatal mouse brain. Photonic Ther Diagnostics III 6424:642425. https://doi.org/10.1117/12.700066

CAS  Article  Google Scholar 

Nolte C (2016) GFAP promoter-controlled EGFP- expressing transgenic mice : a tool to visualize astrocytes and astrogliosis in living brain tissue 86(November):72–86. https://doi.org/10.1002/1098-1136(20010101)33

Daschil N, Humpel C (2016) Green-fluorescent protein+ astrocytes attach to beta-amyloid plaques in an Alzheimer mouse model and are sensitive for clasmatodendrosis. Front Aging Neurosci 8(APR):1–6. https://doi.org/10.3389/fnagi.2016.00075

Farhy-Tselnicker I, Allen NJ (2018) Astrocytes, neurons, synapses: a tripartite view on cortical circuit development. Neural Dev 13(1):1–12. https://doi.org/10.1186/s13064-018-0104-y

CAS  Article  Google Scholar 

Youngjin Lee MB, Su M, Messing A (2006) Astrocyte heterogeneity revealed by expression of a GFAP-LacZ transgene. Glia. https://doi.org/10.1002/glia

Zhang X-M, Zhu J (2011) Kainic acid-induced neurotoxicity: targeting glial responses and glia-derived cytokines. Curr Neuropharmacol 9:388–398. https://doi.org/10.2174/157015911795596540

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kang K-K et al (2020) A comparative study of the phenotype with kainic acid-induced seizure in DBA/2 mice from three different sources. Lab Anim Res 36(1):1–7. https://doi.org/10.1186/s42826-020-00072-y

Article  Google Scholar 

Mccord MC, Lorenzana A, Bloom CS, Chancer ZO, Schauwecker PE (2008) Effect of age on kainate-induced seizure severity and cell death. Neuroscience 154(3):1143–1153. https://doi.org/10.1016/j.neuroscience.2008.03.082

CAS  Article  PubMed  Google Scholar 

Ho G, Zhang C, Zhuo L (2007) Non-invasive fluorescent imaging of gliosis in transgenic mice for profiling developmental neurotoxicity. https://doi.org/10.1016/j.taap.2007.01.023

Watts JC, Giles K, Grillo SK, Lemus A, DeArmond SJ, Prusiner SB (2011) Bioluminescence imaging of Abeta deposition in bigenic mouse models of Alzheimer’s disease. Proc Natl Acad Sci U S A 108(6):2528–2533. https://doi.org/10.1073/pnas.1019034108

Article  PubMed  PubMed Central  Google Scholar 

Forner S, Kawauchi S, Balderrama-Gutierrez G et al (2021) Systematic phenotyping and characterization of the 5xFAD mouse model of Alzheimer’s disease. Sci Data 8:270. https://doi.org/10.1038/s41597-021-01054-y

CAS  Article  PubMed  PubMed Central  Google Scholar 

Manji Z, Rojas A, Wang W, Dingledine R, Varvel NH, Ganesh T (2019) 5xFAD mice display sex-dependent inflammatory gene induction during the prodromal stage of alzheimer’s disease. J Alzheimers Dis. 70(4):1259–1274. https://doi.org/10.3233/JAD-180678

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hillman EMC et al (2011) In vivo optical imaging and dynamic contrast methods for biomedical research. Philos Trans A Math Phys Eng Sci 369(1955):4620–4643. https://doi.org/10.1098/rsta.2011.0264

Article  PubMed  PubMed Central  Google Scholar 

Jacques SL (2013) Optical properties of biological tissues: a review. Phys Med Biol 58(14):5007–5008. https://doi.org/10.1088/0031-9155/58/14/5007

Article  Google Scholar 

Middeldorp J, Hol EM (2011) GFAP in health and disease. Prog Neurobiol 93(3):421–443. https://doi.org/10.1016/j.pneurobio.2011.01.005

CAS  Article  PubMed  Google Scholar 

Isomura M, Yamada K, Noguchi K, Nishizono A (2017) Near-infrared fluorescent protein iRFP720 is optimal for in vivo fluorescence imaging of rabies virus infection. J Gen Virol 98(11):2689–2698. https://doi.org/10.1099/jgv.0.000950

CAS  Article  PubMed  Google Scholar 

Overhaus M, Moore BA, Barbato JE, Behrendt FF, Doering JG, Bauer AJ (2006) Biliverdin protects against polymicrobial sepsis by modulating inflammatory mediators. Am J Physiol - Gastrointest Liver Physiol 290(4):695–703. https://doi.org/10.1152/ajpgi.00152.2005

CAS  Article  Google Scholar 

Dunn-Meynell AA, Dowling P, Marchese M, Rodriguez E, Blumberg B, Choi Y-B, Gaindh D, Lu W (2019) In vivo bioluminescence imaging used to monitor disease activity and therapeutic response in a mouse model of tauopathy. Front Aging Neurosci 11:252. https://doi.org/10.3389/fnagi.2019.00252

CAS  Article  PubMed  PubMed Central  Google Scholar 

Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35. https://doi.org/10.1007/s00401-009-0619-8

Article  PubMed  Google Scholar 

Luo J, Ho P, Steinman L, Wyss-Coray T (2008) Bioluminescence in vivo imaging of autoimmune encephalomyelitis predicts disease. J Neuroinflammation 5:6. https://doi.org/10.1186/1742-2094-5-6

CAS  Article  PubMed  PubMed Central  Google Scholar 

Sofroniew MV (2015) Astrogliosis perspectives. Cold Spring Harb Perspect Biol 7(2):1–16.

留言 (0)

沒有登入
gif