Preparation and evaluation of antibacterial wound dressing based on vancomycin-loaded silk/dialdehyde starch nanoparticles

Zaidi Z, Lanigan SW. Dermatology in Clinical Practice: Springer London; 2010.

Peiman Brouki Milan, Naser Amini, Moein Amoupour, Ali Amadikuchaksaraei, Alireza Rezapour, Farshid Sefat, et al. Scaffolds for regeneration of dermo-epidermal skin tissue. Handbook of Tissue Engineering Scaffolds: Volume Two: Elsevier Science; 2019. p. 193–209.

Boateng J, Catanzano O. Advanced therapeutic dressings for effective wound healing—a review. J Pharm Sci. 2015;104:3653–80.

CAS  PubMed  Article  Google Scholar 

Forson OA, Ayanka E, Olu-Taiwo M, Pappoe-Ashong PJ, Ayeh-Kumi PJ. Bacterial infections in burn wound patients at a tertiary teaching hospital in Accra. Ghana Ann Burns Fire Disasters. 2017;30:116–20.

CAS  PubMed  Google Scholar 

Rashid A, Saqib M, Deeba F, Khan JA. Microbial profile of burn wound infections and their antibiotic sensitivity patterns at burn unit of allied hospital Faisalabad. Pak J Pharm Sci. 2019;32:247–54.

PubMed  Google Scholar 

Pujji OJS, Nakarmi KK, Shrestha B, Rai SM, Jeffery SLA. The Bacteriological Profile of Burn Wound Infections at a Tertiary Burns Center in Nepal. J Burn Care Res. 2019;40:838–45.

PubMed  Article  Google Scholar 

Rezapour-Lactoee A, Yeganeh H, Gharibi R, Milan PB. Enhanced healing of a full-thickness wound by a thermoresponsive dressing utilized for simultaneous transfer and protection of adipose-derived mesenchymal stem cells sheet. J Mater Sci Mater Med. 2020;31:101.

CAS  PubMed  Article  Google Scholar 

Pulat M, Kahraman AS, Tan N, Gumusderelioglu M. Sequential antibiotic and growth factor releasing chitosan-PAAm semi-IPN hydrogel as a novel wound dressing. J Biomater Sci Polym Ed. 2013;24:807–19.

CAS  PubMed  Article  Google Scholar 

Boateng JS, Matthews KH, Stevens HN, Eccleston GM. Wound healing dressings and drug delivery systems: a review. J Pharm Sci. 2008;97:2892–923.

CAS  PubMed  Article  Google Scholar 

el Kenawy R, Worley SD, Broughton R. The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromol. 2007;8:1359–84.

CAS  Article  Google Scholar 

Dizman B, Elasri MO, Mathias LJ. Novel antibacterial polymers. ACS Symp Ser2009. p. 27–51.

Yari A, Yeganeh H, Bakhshi H. Synthesis and evaluation of novel absorptive and antibacterial polyurethane membranes as wound dressing. J Mater Sci Mater Med. 2012;23:2187–202.

CAS  PubMed  Article  Google Scholar 

Albaugh KW, Biely SA, Cavorsi JP. The effect of a cellulose dressing and topical vancomycin on methicillin-resistant Staphylococcus aureus (MRSA) and Gram-positive organisms in chronic wounds: a case series. Ostomy Wound Manage. 2013;59:34–43.

PubMed  Google Scholar 

Lopez-Iglesias C, Barros J, Ardao I, Monteiro FJ, Alvarez-Lorenzo C, Gomez-Amoza JL, et al. Vancomycin-loaded chitosan aerogel particles for chronic wound applications. Carbohydr Polym. 2019;204:223–31.

CAS  PubMed  Article  Google Scholar 

Shariati A, Dadashi M, Moghadam MT, van Belkum A, Yaslianifard S, Darban-Sarokhalil D. Global prevalence and distribution of vancomycin resistant, vancomycin intermediate and heterogeneously vancomycin intermediate Staphylococcus aureus clinical isolates: a systematic review and meta-analysis. Sci Rep. 2020;10:12689.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ziesmer J, Tajpara P, Hempel N-J, Ehrström M, Melican K, Eidsmo L, et al. Vancomycin-Loaded Microneedle Arrays against Methicillin-Resistant Staphylococcus Aureus Skin Infections. Adv Mater Technol 2021;6:2001307-.

Manfredi R, Calza L. The recent evolution of therapeutic weapons against resistant Gram-positive microorganisms. Archivos Venezolanos de Farmacología y Terapéutica. 2008;27:92–104.

Google Scholar 

Rao S, Kupfer Y, Pagala M, Chapnick E, Tessler S. Systemic absorption of oral vancomycin in patients with Clostridium difficile infection. Scand J Infect Dis. 2011;43:386–8.

CAS  PubMed  Article  Google Scholar 

Ruszczak Z, Friess W. Collagen as a carrier for on-site delivery of antibacterial drugs. Adv Drug Deliv Rev. 2003;55:1679–98.

CAS  PubMed  Article  Google Scholar 

Zhang L, Pornpattananangku D, Hu CM, Huang CM. Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem. 2010;17:585–94.

CAS  PubMed  Article  Google Scholar 

Milan PB, Amini N, Mehrabi A, Mousazadeh S, Ababzadeh S, Rezapour A. Cell Sources in Cardiac Tissue Engineering: Current Choices. Curr Stem Cell Res Ther. 2021;16:745–52.

CAS  PubMed  Article  Google Scholar 

Rodrigues A, Emeje M. Recent applications of starch derivatives in nanodrug delivery. Carbohyd Polym. 2012;87:987–94.

CAS  Article  Google Scholar 

Song D, Thio YS, Deng Y. Starch nanoparticle formation via reactive extrusion and related mechanism study. Carbohyd Polym. 2011;85:208–14.

CAS  Article  Google Scholar 

Huang Y, Liu M, Gao C, Yang J, Zhang X, Zhang X, et al. Ultra-small and innocuous cationic starch nanospheres: preparation, characterization and drug delivery study. Int J Biol Macromol. 2013;58:231–9.

CAS  PubMed  Article  Google Scholar 

Xiao S, Liu X, Tong C, Zhao L, Liu X, Zhou A, et al. Dialdehyde starch nanoparticles as antitumor drug delivery system: An in vitro, in vivo, and immunohistological evaluation. Chin Sci Bull. 2012;57:3226–32.

CAS  Article  Google Scholar 

Johnson JL, Yalkowsky SH. Reformulation of a new vancomycin analog: an example of the importance of buffer species and strength. AAPS PharmSciTech. 2006;7:E5.

PubMed  Article  Google Scholar 

Chen Y, Hao Y, Ting K, Li Q, Gao Q. Preparation and emulsification properties of dialdehyde starch nanoparticles. Food Chem. 2019;286:467–74.

CAS  PubMed  Article  Google Scholar 

Liu J, Lu F, Chen H, Bao R, Li Z, Lu B, et al. Healing of skin wounds using a new cocoon scaffold loaded with platelet-rich or platelet-poor plasma. RSC Adv. 2017;7:6474–85.

CAS  Article  Google Scholar 

Wharram SE, Zhang X, Kaplan DL, McCarthy SP. Electrospun silk material systems for wound healing. Macromol Biosci. 2010;10:246–57.

CAS  PubMed  Article  Google Scholar 

Shpichka A, Butnaru D, Bezrukov EA, Sukhanov RB, Atala A, Burdukovskii V, et al. Skin tissue regeneration for burn injury. Stem Cell Res Ther. 2019;10:94.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lago K, Decker CF, Chung KK, Blyth D. Difficult to Treat Infections in the Burn Patient. Surg Infect (Larchmt). 2021;22:95–102.

Article  Google Scholar 

Lee WY, Um IC, Kim MK, Kwon KJ, Kim SG, Park YW. Effectiveness of Woven Silk Dressing Materials on Full-skin Thickness Burn Wounds in Rat Model. Maxillofac Plast Reconstr Surg. 2014;36:280–4.

PubMed  PubMed Central  Article  Google Scholar 

Farokhi M, Mottaghitalab F, Fatahi Y, Khademhosseini A, Kaplan DL. Overview of Silk Fibroin Use in Wound Dressings. Trends Biotechnol. 2018;36:907–22.

CAS  PubMed  Article  Google Scholar 

Johari N, Moroni L, Samadikuchaksaraei A. Tuning the conformation and mechanical properties of silk fibroin hydrogels. European Polymer Journal 2020;134:109842.

Wongsagon R, Shobsngob S, Varavinit S. Preparation and physicochemical properties of dialdehyde tapioca starch. Starch-Stärke. 2005;57:166–72.

CAS  Article  Google Scholar 

Chin SF, Azman A, Pang SC. Size controlled synthesis of starch nanoparticles by a microemulsion method. Journal of Nanomaterials 2014;2014.

Pritchard EM, Valentin T, Panilaitis B, Omenetto F, Kaplan DL. Antibiotic-Releasing Silk Biomaterials for Infection Prevention and Treatment. Adv Func Mater. 2013;23:854–61.

CAS  Article  Google Scholar 

Gharibi R, Shaker A, Rezapour-Lactoee A, Agarwal S. Antibacterial and Biocompatible Hydrogel Dressing Based on Gelatin- and Castor-Oil-Derived Biocidal Agent. ACS Biomater Sci Eng. 2021;7:3633–47.

CAS  PubMed  Article  Google Scholar 

Lan Y, Li W, Jiao Y, Guo R, Zhang Y, Xue W, et al. Therapeutic efficacy of antibiotic-loaded gelatin microsphere/silk fibroin scaffolds in infected full-thickness burns. Acta Biomater. 2014;10:3167–76.

CAS  PubMed  Article  Google Scholar 

Nematollahi Z, Tafazzoli-Shadpour M, Zamanian A, Seyedsalehi A, Mohammad-Behgam S, Ghorbani F, et al. Fabrication of Chitosan Silk-based Tracheal Scaffold Using Freeze-Casting Method. Iran Biomed J. 2017;21:228–39.

PubMed  PubMed Central  Article  Google Scholar 

Hivechi A, Milan PB, Modabberi K, Amoupour M, Ebrahimzadeh K, Gholipour AR, et al. Synthesis and Characterization of Exopolysaccharide Encapsulated PCL/Gelatin Skin Substitute for Full-Thickness Wound Regeneration. Polymers (Basel). 2021;13:854.

CAS  PubMed Central  Article  Google Scholar 

Yoo JW, Mitragotri S. Polymer particles that switch shape in response to a stimulus. Proc Natl Acad Sci U S A. 2010;107:11205–10.

CAS  PubMed  PubMed Central  Article  Google Scholar 

SALİU O, Olatunji GA, Ajetomobi OO, Olosho AI, ABİODUN İ, Amusan G. Crystalline starch citrate biopolymer nanorods as potential stabilizers in nano and micro emulsions. Journal of the Turkish Chemical Society Section B: Chemical Engineering 2017;1:191–200.

Abbas S, Bashari M, Akhtar W, Li WW, Zhang X. Process optimization of ultrasound-assisted curcumin nanoemulsions stabilized by OSA-modified starch. Ultrason Sonochem. 2014;21:1265–74.

CAS  PubMed  Article  Google Scholar 

Cong VT, Gaus K, Tilley RD, Gooding JJ. Rod-shaped mesoporous silica nanoparticles for nanomedicine: recent progress and perspectives. Expert Opin Drug Deliv. 2018;15:881–92.

CAS  PubMed  Article 

留言 (0)

沒有登入
gif