Bone marrow-derived naïve B lymphocytes improve heart function after myocardial infarction: a novel cardioprotective mechanism for empagliflozin

Adamo L, Rocha-Resende C, Lin CY, Evans S, Williams J, Dun H, Li W, Mpoy C, Andhey PS, Rogers BE, Lavine K, Kreisel D, Artyomov M, Randolph GJ, Mann DL (2020) Myocardial B cells are a subset of circulating lymphocytes with delayed transit through the heart. JCI Insight. https://doi.org/10.1172/jci.insight.134700

Article  PubMed  PubMed Central  Google Scholar 

Adamo L, Staloch LJ, Rocha-Resende C, Matkovich SJ, Jiang W, Bajpai G, Weinheimer CJ, Kovacs A, Schilling JD, Barger PM, Bhattacharya D, Mann DL (2018) Modulation of subsets of cardiac B lymphocytes improves cardiac function after acute injury. JCI Insight. https://doi.org/10.1172/jci.insight.120137

Article  PubMed  PubMed Central  Google Scholar 

Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, Rambow F, Marine JC, Geurts P, Aerts J, van den Oord J, Atak ZK, Wouters J, Aerts S (2017) SCENIC: single-cell regulatory network inference and clustering. Nat Methods 14:1083–1086. https://doi.org/10.1038/nmeth.4463

CAS  Article  PubMed  PubMed Central  Google Scholar 

Baartscheer A, Schumacher CA, Wust RC, Fiolet JW, Stienen GJ, Coronel R, Zuurbier CJ (2017) Empagliflozin decreases myocardial cytoplasmic Na(+) through inhibition of the cardiac Na(+)/H(+) exchanger in rats and rabbits. Diabetologia 60:568–573. https://doi.org/10.1007/s00125-016-4134-x

CAS  Article  PubMed  Google Scholar 

Bahit MC, Kochar A, Granger CB (2018) Post-myocardial infarction heart failure. JACC Heart Fail 6:179–186. https://doi.org/10.1016/j.jchf.2017.09.015

Article  PubMed  Google Scholar 

Butler A, Hoffman P, Smibert P, Papalexi E, Satija R (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36:411–420. https://doi.org/10.1038/nbt.4096

CAS  Article  PubMed  PubMed Central  Google Scholar 

Calcagno DM, Ng RP Jr, Toomu A, Zhang C, Huang K, Aguirre AD, Weissleder R, Daniels LB, Fu Z, King KR (2020) The myeloid type I interferon response to myocardial infarction begins in bone marrow and is regulated by Nrf2-activated macrophages. Sci Immunol. https://doi.org/10.1126/sciimmunol.aaz1974

Article  PubMed  PubMed Central  Google Scholar 

Cariappa A, Chase C, Liu H, Russell P, Pillai S (2007) Naive recirculating B cells mature simultaneously in the spleen and bone marrow. Blood 109:2339–2345. https://doi.org/10.1182/blood-2006-05-021089

CAS  Article  PubMed  Google Scholar 

Courties G, Frodermann V, Honold L, Zheng Y, Herisson F, Schloss MJ, Sun Y, Presumey J, Severe N, Engblom C, Hulsmans M, Cremer S, Rohde D, Pittet MJ, Scadden DT, Swirski FK, Kim DE, Moskowitz MA, Nahrendorf M (2019) Glucocorticoids regulate bone marrow B lymphopoiesis after stroke. Circ Res 124:1372–1385. https://doi.org/10.1161/CIRCRESAHA.118.314518

CAS  Article  PubMed  PubMed Central  Google Scholar 

Farbehi N, Patrick R, Dorison A, Xaymardan M, Janbandhu V, Wystub-Lis K, Ho JW, Nordon RE, Harvey RP (2019) Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. Elife. https://doi.org/10.7554/eLife.43882

Article  PubMed  PubMed Central  Google Scholar 

Goodchild TT, Robinson KA, Pang W, Tondato F, Cui J, Arrington J, Godwin L, Ungs M, Carlesso N, Weich N, Poznansky MC, Chronos NA (2009) Bone marrow-derived B cells preserve ventricular function after acute myocardial infarction. JACC Cardiovasc Interv 2:1005–1016. https://doi.org/10.1016/j.jcin.2009.08.010

Article  PubMed  Google Scholar 

Guder G, Bauersachs J, Frantz S, Weismann D, Allolio B, Ertl G, Angermann CE, Stork S (2007) Complementary and incremental mortality risk prediction by cortisol and aldosterone in chronic heart failure. Circulation 115:1754–1761. https://doi.org/10.1161/CIRCULATIONAHA.106.653964

CAS  Article  PubMed  Google Scholar 

Heusch G (2020) Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol 17:773–789. https://doi.org/10.1038/s41569-020-0403-y

Article  PubMed  Google Scholar 

Hoffmann J, Luxán G, Abplanalp WT, Glaser S-F, Rasper T, Fischer A, Muhly-Reinholz M, Potente M, Assmus B, John D, Zeiher AM, Dimmeler S (2021) Post-myocardial infarction heart failure dysregulates the bone vascular niche. Nat Commun 12:3964–3964. https://doi.org/10.1038/s41467-021-24045-4

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hofmann U, Frantz S (2015) Role of lymphocytes in myocardial injury, healing, and remodeling after myocardial infarction. Circ Res 116:354–367. https://doi.org/10.1161/CIRCRESAHA.116.304072

CAS  Article  PubMed  Google Scholar 

Horckmans M, Bianchini M, Santovito D, Megens RTA, Springael JY, Negri I, Vacca M, Di Eusanio M, Moschetta A, Weber C, Duchene J, Steffens S (2018) Pericardial adipose tissue regulates granulopoiesis, fibrosis, and cardiac function after myocardial infarction. Circulation 137:948–960. https://doi.org/10.1161/CIRCULATIONAHA.117.028833

Article  PubMed  Google Scholar 

Jarcho JA (2020) More evidence for SGLT2 inhibitors in heart failure. N Engl J Med 383:1481–1482. https://doi.org/10.1056/NEJMe2027915

CAS  Article  PubMed  Google Scholar 

Jiang K, Tu Z, Chen K, Xu Y, Chen F, Xu S, Shi T, Qian J, Shen L, Hwa J, Wang D, Xiang Y (2022) Gasdermin D inhibition confers antineutrophil-mediated cardioprotection in acute myocardial infarction. J Clin Invest. https://doi.org/10.1172/JCI151268

Article  PubMed  PubMed Central  Google Scholar 

Jiang K, Xu Y, Wang D, Chen F, Tu Z, Qian J, Xu S, Xu Y, Hwa J, Li J, Shang H, Xiang Y (2021) Cardioprotective mechanism of SGLT2 inhibitor against myocardial infarction is through reduction of autosis. Protein Cell. https://doi.org/10.1007/s13238-020-00809-4

Article  PubMed  PubMed Central  Google Scholar 

Kim SR, Lee SG, Kim SH, Kim JH, Choi E, Cho W, Rim JH, Hwang I, Lee CJ, Lee M, Oh CM, Jeon JY, Gee HY, Kim JH, Lee BW, Kang ES, Cha BS, Lee MS, Yu JW, Cho JW, Kim JS, Lee YH (2020) SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat Commun 11:2127. https://doi.org/10.1038/s41467-020-15983-6

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lindsley RC, Thomas M, Srivastava B, Allman D (2007) Generation of peripheral B cells occurs via two spatially and temporally distinct pathways. Blood 109:2521–2528. https://doi.org/10.1182/blood-2006-04-018085

CAS  Article  PubMed  Google Scholar 

Liu P, Keller JR, Ortiz M, Tessarollo L, Rachel RA, Nakamura T, Jenkins NA, Copeland NG (2003) Bcl11a is essential for normal lymphoid development. Nat Immunol 4:525–532. https://doi.org/10.1038/ni925

CAS  Article  PubMed  Google Scholar 

Lopaschuk GD, Verma S (2020) Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors: a state-of-the-art review. JACC Basic Transl Sci 5:632–644. https://doi.org/10.1016/j.jacbts.2020.02.004

Article  PubMed  PubMed Central  Google Scholar 

Mazer CD, Hare GMT, Connelly PW, Gilbert RE, Shehata N, Quan A, Teoh H, Leiter LA, Zinman B, Juni P, Zuo F, Mistry N, Thorpe KE, Goldenberg RM, Yan AT, Connelly KA, Verma S (2020) Effect of empagliflozin on erythropoietin levels, iron stores, and red blood cell morphology in patients with type 2 diabetes mellitus and coronary artery disease. Circulation 141:704–707. https://doi.org/10.1161/CIRCULATIONAHA.119.044235

Article  PubMed  Google Scholar 

Monaco G, Lee B, Xu W, Mustafah S, Hwang YY, Carre C, Burdin N, Visan L, Ceccarelli M, Poidinger M, Zippelius A, Pedro de Magalhaes J, Larbi A (2019) RNA-Seq signatures normalized by mRNA abundance allow absolute deconvolution of human immune cell types. Cell Rep 26(1627–1640):e1627. https://doi.org/10.1016/j.celrep.2019.01.041

CAS  Article  Google Scholar 

Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, Khodadoust MS, Esfahani MS, Luca BA, Steiner D, Diehn M, Alizadeh AA (2019) Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol 37:773–782. https://doi.org/10.1038/s41587-019-0114-2

CAS  Article  PubMed  PubMed Central  Google Scholar 

Qiu X, Hill A, Packer J, Lin D, Ma YA, Trapnell C (2017) Single-cell mRNA quantification and differential analysis with Census. Nat Methods 14:309–315. https://doi.org/10.1038/nmeth.4150

CAS  Article  PubMed  PubMed Central  Google Scholar 

Rurik JG, Aghajanian H, Epstein JA (2021) Immune cells and immunotherapy for cardiac injury and repair. Circ Res 128:1766–1779. https://doi.org/10.1161/CIRCRESAHA.121.318005

CAS  Article  PubMed  PubMed Central  Google Scholar 

Song S, Cao C, Choukrallah MA, Tang F, Christofori G, Kohler H, Wu F, Fodor BD, Frederiksen M, Willis SN, Jackson JT, Nutt SL, Dirnhofer S, Stadler MB, Matthias P (2021) OBF1 and Oct factors control the germinal center transcriptional program. Blood 137:2920–2934. https://doi.org/10.1182/blood.2020010175

CAS  Article  PubMed  Google Scholar 

Sreejit G, Abdel-Latif A, Athmanathan B, Annabathula R, Dhyani A, Noothi SK, Quaife-Ryan GA, Al-Sharea A, Pernes G, Dragoljevic D, Lal H, Schroder K, Hanaoka BY, Raman C, Grant MB, Hudson JE, Smyth SS, Porrello ER, Murphy AJ, Nagareddy PR (2020) Neutrophil-Derived S100A8/A9 amplify granulopoiesis after myocardial infarction. Circulation 141:1080–1094. https://doi.org/10.1161/CIRCULATIONAHA.119.043833

CAS  Article  PubMed  PubMed Central  Google Scholar 

Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, Hao Y, Stoeckius M, Smibert P, Satija R (2019) Comprehensive integration of single-cell data. Cell 177:1888-1902.e1821. https://doi.org/10.1016/j.cell.2019.05.031

CAS  Article  PubMed  PubMed Central  Google Scholar 

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550. https://doi.org/10.1073/pnas.0506580102

CAS  Article  PubMed  PubMed Central

留言 (0)

沒有登入
gif