Commentary: cumulative risk assessment of perfluoroalkyl carboxylic acids and perfluoralkyl sulfonic acids: what is the scientific support for deriving tolerable exposures by assembling 27 PFAS into 1 common assessment group?

3M-Company (2020) Comments submitted by the 3M Company for the Public consultation on the draft risk assessment of perfluoroalkyl substances in food. Zenodo. https://doi.org/10.5281/zenodo.4025326

Alison RH, Capen CC, Prentice DE (1994) Neoplastic lesions of questionable significance to humans. Toxicol Pathol 22:179–186. https://doi.org/10.1177/019262339402200211

CAS  Article  PubMed  Google Scholar 

Antoniou E, Colnot T, Zeegers M, Dekant W (2022) Immunomodulation and exposure to per- and polyfluoroalkyl substances: an overview of the current evidence from animal and human studies. Arch Toxicol 96:2261–2285. https://doi.org/10.1007/s00204-022-03303-4

CAS  Article  PubMed  Google Scholar 

ATSDR (2018) Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological profile for toluene diisocyanate and methylenediphenyl diisocyanate US Department of Health and Human Services, Public Health Service, Jun 2018. ATSDR; US Department of Health and Human Services; Public Health Service, Agency for Toxic Substances and Disease Registry, p 267P

Google Scholar 

ATSDR (2021) Agency for Toxic Substances and Disease Registry. Toxicological profile for perfluoroalkyls. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. Available: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=1117&tid=237. doi:https://doi.org/10.15620/cdc:59198

Barzen-Hanson KA, Roberts SC, Choyke S, Oetjen K, McAlees A, Riddell N, McCrindle R, Ferguson PL, Higgins CP, Field JA (2017) Discovery of 40 classes of per- and polyfluoroalkyl substances in historical aqueous film-forming foams (AFFFs) and AFFF-impacted groundwater. Environ Sci Technol 51:2047–2057. https://doi.org/10.1021/acs.est.6b05843

CAS  Article  PubMed  Google Scholar 

Bil W, Zeilmaker M, Fragki S, Lijzen J, Verbruggen E, Bokkers B (2021) Risk assessment of per- and polyfluoroalkyl substance mixtures: a relative potency factor approach. Environ Toxicol Chem 40:859–870. https://doi.org/10.1002/etc.4835

CAS  Article  PubMed  Google Scholar 

Braeuning A, Bloch D, Karaca M, Kneuer C, Rotter S, Tralau T, Marx-Stoelting P (2022) An approach for mixture testing and prioritization based on common kinetic groups. Arch Toxicol 96:1661–1671. https://doi.org/10.1007/s00204-022-03264-8

CAS  Article  PubMed  PubMed Central  Google Scholar 

Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, de Voogt P, Jensen AA, Kannan K, Mabury SA, van Leeuwen SP (2011) Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag 7:513–541. https://doi.org/10.1002/ieam.258

CAS  Article  PubMed  PubMed Central  Google Scholar 

Capen CC (1997) Mechanistic data and risk assessment of selected toxic end points of the thyroid gland. Toxicol Pathol 25:39–48. https://doi.org/10.1177/019262339702500109

CAS  Article  PubMed  Google Scholar 

Chou WC, Lin Z (2019) Bayesian evaluation of a physiologically based pharmacokinetic (PBPK) model for perfluorooctane sulfonate (PFOS) to characterize the interspecies uncertainty between mice, rats, monkeys, and humans: Development and performance verification. Environ Int 129:408–422. https://doi.org/10.1016/j.envint.2019.03.058

CAS  Article  PubMed  Google Scholar 

Chou WC, Lin Z (2020) Probabilistic human health risk assessment of perfluorooctane sulfonate (PFOS) by integrating in vitro, in vivo toxicity, and human epidemiological studies using a Bayesian-based dose-response assessment coupled with physiologically based pharmacokinetic (PBPK) modeling approach. Environ Int 137:105581. https://doi.org/10.1016/j.envint.2020.105581

CAS  Article  PubMed  Google Scholar 

Colnot T, Melching-Kollmuss S, Semino G, Dekant W (2020) A flow scheme for cumulative assessment of pesticides for adverse liver effects. Regul Toxicol Pharmacol 116:104694. https://doi.org/10.1016/j.yrtph.2020.104694

CAS  Article  PubMed  Google Scholar 

Curran PG, DeGroot LJ (1991) The effect of hepatic enzyme-inducing drugs on thyroid hormones and the thyroid gland. Endocr Rev 12:135–150. https://doi.org/10.1210/edrv-12-2-135

CAS  Article  PubMed  Google Scholar 

De Silva AO, Armitage JM, Bruton TA, Dassuncao C, Heiger-Bernays W, Hu XC, Kärrman A, Kelly B, Ng C, Robuck A, Sun M, Webster TF, Sunderland EM (2021) PFAS exposure pathways for humans and wildlife: a synthesis of current knowledge and key gaps in understanding. Environ Toxicol Chem 40:631–657. https://doi.org/10.1002/etc.4935

CAS  Article  PubMed  PubMed Central  Google Scholar 

Dellarco VL, McGregor D, Berry SC, Cohen SM, Boobis AR (2006) Thiazopyr and thyroid disruption: case study within the context of the 2006 IPCS Human Relevance Framework for analysis of a cancer mode of action. Crit Rev Toxicol 36:793–801. https://doi.org/10.1080/10408440600975242

CAS  Article  PubMed  Google Scholar 

EFSA, Chain PoCitF, Knutsen HK, Alexander J, Barregard L, Bignami M, Bruschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Vleminckx C, Vollmer G, Wallace H, Bodin L, Cravedi JP, Halldorsson TI, Haug LS, Johansson N, van Loveren H, Gergelova P, Mackay K, Levorato S, van Manen M, Schwerdtle T (2018) Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J 16:e05194. https://doi.org/10.2903/j.efsa.2018.5194

CAS  Article  Google Scholar 

EFSA, Committee S, More SJ, Bampidis V, Benford D, Bennekou SH, Bragard C, Halldorsson TI, Hernandez-Jerez AF, Koutsoumanis K, Naegeli H, Schlatter JR, Silano V, Nielsen SS, Schrenk D, Turck D, Younes M, Benfenati E, Castle L, Cedergreen N, Hardy A, Laskowski R, Leblanc JC, Kortenkamp A, Ragas A, Posthuma L, Svendsen C, Solecki R, Testai E, Dujardin B, Kass GE, Manini P, Jeddi MZ, Dorne JC, Hogstrand C (2019) Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals. EFSA J 17:e05634. https://doi.org/10.2903/j.efsa.2019.5634

Article  Google Scholar 

EFSA, Committee S, More SJ, Bampidis V, Benford D, Bragard C, Hernandez-Jerez A, Bennekou SH, Halldorsson TI, Koutsoumanis KP, Lambre C, Machera K, Naegeli H, Nielsen SS, Schlatter JR, Schrenk D, Silano V, Turck D, Younes M, Benfenati E, Crepet A, Te Biesebeek JD, Testai E, Dujardin B, Dorne JLC, Hogstrand C (2021) Guidance Document on Scientific criteria for grouping chemicals into assessment groups for human risk assessment of combined exposure to multiple chemicals. EFSA J 19:e07033. https://doi.org/10.2903/j.efsa.2021.7033

Article  Google Scholar 

EFSA-PPR (2013) EFSA panel on plant protection products and their residues. Scientific opinion on the identification of pesticides to be included in cumulative assessment groups on the basis of their toxicological profile. EFSA J 11:3293. https://doi.org/10.2903/j.efsa.2013.3293

CAS  Article  Google Scholar 

Foster JR, Semino-Beninel G, Melching-Kollmuss S (2020) The cumulative risk assessment of hepatotoxic chemicals: a hepatic histopathology perspective. Toxicol Pathol 48:397–410. https://doi.org/10.1177/0192623319895481

Article  PubMed  Google Scholar 

Foster JR, Tinwell H, Melching-Kollmuss S (2021) A review of species differences in the control of, and response to, chemical-induced thyroid hormone perturbations leading to thyroid cancer. Arch Toxicol 95:807–836. https://doi.org/10.1007/s00204-020-02961-6

CAS  Article  PubMed  Google Scholar 

Fragki S, Dirven H, Fletcher T, Grasl-Kraupp B, Bjerve Gutzkow K, Hoogenboom R, Kersten S, Lindeman B, Louisse J, Peijnenburg A, Piersma AH, Princen HMG, Uhl M, Westerhout J, Zeilmaker MJ, Luijten M (2021) Systemic PFOS and PFOA exposure and disturbed lipid homeostasis in humans: what do we know and what not? Crit Rev Toxicol 51:141–164. https://doi.org/10.1080/10408444.2021.1888073

CAS  Article  PubMed  Google Scholar 

FSANZ (2017) Hazard Assessment Report—Perfluorooctane Sulfonate(PFOS). Food Standards Australia New Zealand, Perfluorooctanoic Acid (PFOA), Perfluorohexane Sulfonate(PFHxS)

Google Scholar 

Gomis MI, Vestergren R, Borg D, Cousins IT (2018) Comparing the toxic potency in vivo of long-chain perfluoroalkyl acids and fluorinated alternatives. Environ Int 113:1–9. https://doi.org/10.1016/j.envint.2018.01.011

CAS  Article  PubMed  Google Scholar 

Goodrum PE, Anderson JK, Luz AL, Ansell GK (2021) Application of a framework for grouping and mixtures toxicity assessment of PFAS: a closer examination of dose-additivity approaches. Toxicol Sci 179:262–278. https://doi.org/10.1093/toxsci/kfaa123

CAS  Article  PubMed  Google Scholar 

Health-Canada (2018a) Guidelines for Canadian Drinking WaterQuality: Guideline Technical Document: Perfluorooctane Sulfonate (PFOS). Water and AirQuality Bureau, Healthy Environmentsand Consumer Safety Branch, Health Canada, Ottawa, Ontario

Google Scholar 

Health-Canada (2018b) Guidelines for Canadian Drinking WaterQuality: Guideline Technical Document: Perfluorooctanoic Acid(PFOA). Water and Air Quality Bureau, Healthy Environmentsand Consumer Safety Branch, Health Canada, Ottawa, Ontario

Google Scholar 

Health-Canada (2018c) Science Policy Note SPN2018c-02, Cumulative Health Risk Assessment Framework.Available: https://www.canada.ca/en/health-canada/services/consumer-product-safety/reports-publications/pesticides-pest-management/policies-guidelines/science-policy-notes/2018c/cumulative-health-risk-assessment-framework-spn2018c-02.html.

Health-Canada, (2019) Summary Table: Health Canada DraftGuidelines, Screening Values and Toxicological Reference Values (TRVs) for Perfluoroalkyl Substances (PFAS). Health Canada, Ottawa, Ontario

Google Scholar 

Hovey RC, Coder PS, Wolf JC, Sielken RL Jr, Tisdel MO, Breckenridge CB (2011) Quantitative assessment of mammary gland development in female Long Evans rats following in utero exposure to atrazine. Toxicol Sci 119:380–390. https://doi.org/10.1093/toxsci/kfq337

CAS  Article  PubMed  Google Scholar 

Jahnke A, Berger U (2009) Trace analysis of per- and polyfluorinated alkyl substances in various matrices-how do current methods perform? J Chromatogr A 1216:410–421. https://doi.org/10.1016/j.chroma.2008.08.098

CAS  Article  PubMed  Google Scholar 

Lampic A, Parnis JM (2020) Property estimation of per- and polyfluoroalkyl substances: a comparative assessment of estimation methods. Environ Toxicol Chem 39:775–786. https://doi.org/10.1002/etc.4681

CAS  Article  PubMed  Google Scholar 

Meek ME, Boobis AR, Crofton KM, Heinemeyer G, Raaij MV, Vickers C (2011) Risk assessment of combined exposure to multiple chemicals: a WHO/IPCS framework. Regul Toxicol Pharmacol. https://doi.org/10.1016/j.yrtph.2011.03.010

Article  PubMed  Google Scholar 

Meek ME, Boobis A, Cote I, Dellarco V, Fotakis G, Munn S, Seed J, Vickers C (2014) New developments in the evolution and application of the WHO/IPCS framework on mode of action/species concordance analysis. J Appl Toxicol 34:1–18. https://doi.org/10.1002/jat.2949

CAS  Article  PubMed  Google Scholar 

Patlewicz G, Fitzpatrick JM (2016) Current and future perspectives on the development, evaluation, and application of in silico approaches for predicting toxicity. Chem Res Toxicol 29:438–451. https://doi.org/10.1021/acs.chemrestox.5b00388

CAS  Article  PubMed  Google Scholar 

Patlewicz G, Ball N, Becker RA, Booth ED, Cronin MT, Kroese D, Steup D, van Ravenzwaay B, Hartung T (2014) Read-across approaches–misconceptions, promises and challenges ahead. Altex 31:387–396. https://doi.org/10.14573/altex.1410071

Article  PubMed  Google Scholar 

Peters JM, Gonzalez FJ (2011) Why toxic equivalency factors are not suitable for perfluoroalkyl chemicals. Chem Res Toxicol 24:1601–1609. https://doi.org/10.1021/tx200316x

CAS  Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif