CuO-NPs-triggered heterophil extracellular traps exacerbate liver injury in chicks by promoting oxidative stress and inflammatory responses

Aldabbous L, Abdul-Salam V, McKinnon T et al (2016) Neutrophil extracellular traps promote angiogenesis: evidence from vascular pathology in pulmonary hypertension. Arterioscler Thromb Vasc Biol 36(10):2078–2087. https://doi.org/10.1161/atvbaha.116.307634

CAS  Article  PubMed  Google Scholar 

Atha DH, Wang H, Petersen EJ et al (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46(3):1819–1827. https://doi.org/10.1021/es202660k

CAS  Article  PubMed  Google Scholar 

Bajpai R, Matulis SM, Wei C et al (2016) Targeting glutamine metabolism in multiple myeloma enhances BIM binding to BCL-2 eliciting synthetic lethality to venetoclax. Oncogene 35(30):3955–3964. https://doi.org/10.1038/onc.2015.464

CAS  Article  PubMed  Google Scholar 

Borregaard N, Herlin T (1982) Energy metabolism of human neutrophils during phagocytosis. J Clin Investig 70(3):550–557. https://doi.org/10.1172/jci110647

CAS  Article  PubMed  PubMed Central  Google Scholar 

Brinkmann V, Reichard U, Goosmann C et al (2004) Neutrophil extracellular traps kill bacteria. Science (new York, NY) 303(5663):1532–1535. https://doi.org/10.1126/science.1092385

CAS  Article  Google Scholar 

Chuammitri P, Ostojić J, Andreasen CB, Redmond SB, Lamont SJ, Palić D (2009) Chicken heterophil extracellular traps (HETs): novel defense mechanism of chicken heterophils. Vet Immunol Immunopathol 129(1–2):126–131. https://doi.org/10.1016/j.vetimm.2008.12.013

CAS  Article  PubMed  Google Scholar 

Clem B, Telang S, Clem A et al (2008) Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther 7(1):110–120. https://doi.org/10.1158/1535-7163.Mct-07-0482

CAS  Article  PubMed  Google Scholar 

Ehrke E, Arend C, Dringen R (2015) 3-bromopyruvate inhibits glycolysis, depletes cellular glutathione, and compromises the viability of cultured primary rat astrocytes. J Neurosci Res 93(7):1138–1146. https://doi.org/10.1002/jnr.23474

CAS  Article  PubMed  Google Scholar 

Fadini GP, Menegazzo L, Rigato M et al (2016) NETosis delays diabetic wound healing in mice and humans. Diabetes 65(4):1061–1071. https://doi.org/10.2337/db15-0863

CAS  Article  PubMed  Google Scholar 

Genovese KJ, He H, Swaggerty CL, Kogut MH (2013) The avian heterophil. Dev Comp Immunol 41(3):334–340. https://doi.org/10.1016/j.dci.2013.03.021

CAS  Article  PubMed  Google Scholar 

Gonzales-Eguia A, Fu C-M, Lu F-Y, Lien T-F (2009) Effects of nanocopper on copper availability and nutrients digestibility, growth performance and serum traits of piglets. Livestock Sci 126(1–3):122–129

Article  Google Scholar 

Hakkim A, Fuchs TA, Martinez NE et al (2011) Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat Chem Biol 7(2):75–77. https://doi.org/10.1038/nchembio.496

CAS  Article  PubMed  Google Scholar 

Han Z, Zhang Y, Wang C et al (2019) Ochratoxin a-triggered chicken heterophil extracellular traps release through reactive oxygen species production dependent on activation of NADPH oxidase, ERK, and p38 MAPK signaling pathways. J Agric Food Chem 67(40):11230–11235. https://doi.org/10.1021/acs.jafc.9b03155

CAS  Article  PubMed  Google Scholar 

Hassanen EI, Tohamy AF, Issa MY, Ibrahim MA, Farroh KY, Hassan AM (2019) Pomegranate juice diminishes the mitochondria-dependent cell death and NF-kB signaling pathway induced by copper oxide nanoparticles on liver and kidneys of rats. Int J Nanomed 14:8905–8922. https://doi.org/10.2147/ijn.S229461

CAS  Article  Google Scholar 

He H, Farnell MB, Kogut MH (2003) Inflammatory agonist stimulation and signal pathway of oxidative burst in neonatal chicken heterophils. Comp Biochem Physiol A Mol Integr Physiol 135(1):177–184. https://doi.org/10.1016/s1095-6433(03)00049-7

Article  PubMed  Google Scholar 

He H, Zou Z, Wang B et al (2020) Copper oxide nanoparticles induce oxidative DNA damage and cell death via copper ion-mediated P38 MAPK activation in vascular endothelial cells. Int J Nanomed 15:3291–3302. https://doi.org/10.2147/ijn.S241157

CAS  Article  Google Scholar 

Healy DA, Watson RW, Newsholme P (2002) Glucose, but not glutamine, protects against spontaneous and anti-Fas antibody-induced apoptosis in human neutrophils. Clin Sci (london, England: 1979) 103(2):179–189. https://doi.org/10.1042/cs1030179

CAS  Article  Google Scholar 

Holan V, Javorkova E, Vrbova K et al (2019) A murine model of the effects of inhaled CuO nanoparticles on cells of innate and adaptive immunity—a kinetic study of a continuous three-month exposure. Nanotoxicology 13(7):952–963. https://doi.org/10.1080/17435390.2019.1602679

CAS  Article  PubMed  Google Scholar 

Hong CS, Graham NA, Gu W et al (2016) MCT1 modulates cancer cell pyruvate export and growth of tumors that co-express MCT1 and MCT4. Cell Rep 14(7):1590–1601. https://doi.org/10.1016/j.celrep.2016.01.057

CAS  Article  PubMed  PubMed Central  Google Scholar 

Huang H, Chen HW, Evankovich J et al (2013) Histones activate the NLRP3 inflammasome in Kupffer cells during sterile inflammatory liver injury. J Immunol (baltimore, Md: 1950) 191(5):2665–2679. https://doi.org/10.4049/jimmunol.1202733

CAS  Article  Google Scholar 

Huang H, Tohme S, Al-Khafaji AB et al (2015) Damage-associated molecular pattern-activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury. Hepatology (baltimore, MD) 62(2):600–614. https://doi.org/10.1002/hep.27841

CAS  Article  Google Scholar 

Javed R, Ahmed M, Haq IU, Nisa S, Zia M (2017) PVP and PEG doped CuO nanoparticles are more biologically active: antibacterial, antioxidant, antidiabetic and cytotoxic perspective. Mater Sci Eng, C Mater Biol Appl 79:108–115. https://doi.org/10.1016/j.msec.2017.05.006

CAS  Article  Google Scholar 

Jeong J, Kim J, Seok SH, Cho WS (2016) Indium oxide (In2O3) nanoparticles induce progressive lung injury distinct from lung injuries by copper oxide (CuO) and nickel oxide (NiO) nanoparticles. Arch Toxicol 90(4):817–828. https://doi.org/10.1007/s00204-015-1493-x

CAS  Article  PubMed  Google Scholar 

Jiang A, Zhang Y, Wu D et al (2021) Sodium molybdate induces heterophil extracellular traps formation in chicken. Ecotoxicol Environ Saf 210:111886. https://doi.org/10.1016/j.ecoenv.2020.111886

CAS  Article  PubMed  Google Scholar 

Johnston HJ, Verdon R, Gillies S et al (2018) Adoption of in vitro systems and zebrafish embryos as alternative models for reducing rodent use in assessments of immunological and oxidative stress responses to nanomaterials. Crit Rev Toxicol 48(3):252–271. https://doi.org/10.1080/10408444.2017.1404965

CAS  Article  PubMed  Google Scholar 

Joshi MB, Baipadithaya G, Balakrishnan A et al (2016) Elevated homocysteine levels in type 2 diabetes induce constitutive neutrophil extracellular traps. Sci Rep 6:36362. https://doi.org/10.1038/srep36362

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kennedy AD, DeLeo FR (2009) Neutrophil apoptosis and the resolution of infection. Immunol Res 43(1–3):25–61. https://doi.org/10.1007/s12026-008-8049-6

Article  PubMed  Google Scholar 

Klopf J, Brostjan C, Eilenberg W, Neumayer C (2021) Neutrophil extracellular traps and their implications in cardiovascular and inflammatory disease. Int J Mol Sci. https://doi.org/10.3390/ijms22020559

Article  PubMed  PubMed Central  Google Scholar 

Lee KH, Kronbichler A, Park DD et al (2017) Neutrophil extracellular traps (NETs) in autoimmune diseases: a comprehensive review. Autoimmun Rev 16(11):1160–1173. https://doi.org/10.1016/j.autrev.2017.09.012

CAS  Article  PubMed  Google Scholar 

Liu H, Lai W, Liu X et al (2021) Exposure to copper oxide nanoparticles triggers oxidative stress and endoplasmic reticulum (ER)-stress induced toxicology and apoptosis in male rat liver and BRL-3A cell. J Hazard Mater 401:123349. https://doi.org/10.1016/j.jhazmat.2020.123349

CAS  Article  PubMed  Google Scholar 

Matsumoto T, Jimi S, Migita K, Takamatsu Y, Hara S (2016) Inhibition of glucose transporter 1 induces apoptosis and sensitizes multiple myeloma cells to conventional chemotherapeutic agents. Leuk Res 41:103–110. https://doi.org/10.1016/j.leukres.2015.12.008

CAS  Article  PubMed  Google Scholar 

Mohanty T, Fisher J, Bakochi A et al (2019) Neutrophil extracellular traps in the central nervous system hinder bacterial clearance during pneumococcal meningitis. Nat Commun 10(1):1667. https://doi.org/10.1038/s41467-019-09040-0

CAS  Article  PubMed  PubMed Central  Google Scholar 

Nguyen TT, Ngo LQ, Promsudthi A, Surarit R (2016) Salivary lipid peroxidation in patients with generalized chronic periodontitis and acute coronary syndrome. J Periodontol 87(2):134–141. https://doi.org/10.1902/jop.2015.150353

CAS  Article  PubMed  Google Scholar 

Papayannopoulos V (2018) Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 18(2):134–147. https://doi.org/10.1038/nri.2017.105

CAS  Article  PubMed  Google Scholar 

Periasamy S, Chu PY, Li YH, Hsu DZ, Liu MY (2015) Sesamol ameliorates hypotension by modulating cytokines and PPAR-gamma in systemic inflammatory response. EXCLI J 14:948–957. https://doi.org/10.17179/excli2015-367

Article  PubMed  PubMed Central  Google Scholar 

Pisoschi AM, Pop A (2015) The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem 97:55–74. https://doi.org/10.1016/j.ejmech.2015.04.040

CAS  Article  PubMed  Google Scholar 

Rodríguez-Espinosa O, Rojas-Espinosa O, Moreno-Altamirano MM, López-Villegas EO, Sánchez-García FJ (2015) Metabolic requirements for neutrophil extracellular traps formation. Immunology 145(2):213–224. https://doi.org/10.1111/imm.12437

留言 (0)

沒有登入
gif