Association between lead exposure and DNA damage (genotoxicity): systematic review and meta-analysis

(2010) IARC monographs on the evaluation of carcinogenic risks to humans. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans https://doi.org/10.1136/jcp.48.7.691-a

(2012) CDC Preventing lead poisoning in young children Atlanta, GA: US Department of Health and Human Services

Akram Z, Riaz S, Kayani MA et al (2019) Lead induces DNA damage and alteration of ALAD and antioxidant genes mRNA expression in construction site workers. Arch Environ Occup Health. https://doi.org/10.1080/19338244.2018.1428523

Article  PubMed  Google Scholar 

Aksu İ, Anlar HG, Taner G et al (2019) Assessment of DNA damage in welders using comet and micronucleus assays. Mut Res Gen Toxicol Environ Mutag 843:40–45. https://doi.org/10.1016/j.mrgentox.2018.11.006

CAS  Article  Google Scholar 

Alabi OA, Adeoluwa YM, Bakare AA (2020) Elevated serum Pb, Ni, Cd, and Cr levels and DNA damage in exfoliated buccal cells of teenage scavengers at a major electronic waste dumpsite in Lagos, Nigeria. Biol Trace Element Res. https://doi.org/10.1007/s12011-019-01745-z

Article  Google Scholar 

Albertini RJ, Anderson D, Douglas GR et al (2000) IPCS guidelines for the monitoring of genotoxic effects of carcinogens in humans. Mutat Res Rev Mutat Res. https://doi.org/10.1016/S1383-5742(00)00049-1

Article  Google Scholar 

Altman D, Machin D, Bryant T, Gardner M (2000) Statistics With Confidence 2nd ed - D. Altman, et al., (BMJ, 2005) WW.pdf. VI International Conference on Photon Correlation and Other Techniques in Fluid Mechanics

Augusto LGDS, Lieber SR, Ruiz MA, De Souza CA (1997) Micronucleus monitoring to assess human occupational exposure to organochlorides. Environ Mol Mutagen. https://doi.org/10.1002/(SICI)1098-2280(1997)29:1%3c46::AID-EM6%3e3.0.CO;2-B

Article  Google Scholar 

Bagepally BS, Balachandar R, Kalahasthi R et al (2021) Association between aluminium exposure and cognitive functions: a systematic review and meta-analysis. Chemosphere 268:128831

CAS  Article  Google Scholar 

Balachandar R, Bagepally BS, Kalahasthi R, Haridoss M (2020) Blood lead levels and male reproductive hormones: a systematic review and meta-analysis. Toxicology 443:152574

CAS  Article  Google Scholar 

Balasubramanian B, Meyyazhagan A, Chinnappan AJ et al (2020) Occupational health hazards on workers exposure to lead (Pb): a genotoxicity analysis. J Infect Public Health. https://doi.org/10.1016/j.jiph.2019.10.005

Article  PubMed  Google Scholar 

Batra J, Thakur A, Juyal D, Meena SK (2020) Lead induced oxidative DNA damage among the occupationally exposed workers: a case-control study. J Clin Diagn Res. https://doi.org/10.7860/jcdr/2020/43682.13572

Article  Google Scholar 

Bauchinger M, Schmid E, Einbrodt HJ, Dresp J (1976) Chromosome aberrations in lymphocytes after occupational exposure to lead and cadmium. Mutat Res Genet Toxicol. https://doi.org/10.1016/0165-1218(76)90023-9

Article  Google Scholar 

Bilban M (1998) Influence of the work environment in a Pb-Zn mine on the incidence of cytogenetic damage in miners. Am J Ind Med. https://doi.org/10.1002/(SICI)1097-0274(199811)34:5%3c455::AID-AJIM6%3e3.0.CO;2-P

Article  PubMed  Google Scholar 

Bonassi S, Znaor A, Ceppi M et al (2007) An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis. https://doi.org/10.1093/carcin/bgl177

Article  PubMed  Google Scholar 

Carere A, Antoccia A, Crebelli R et al (1995) Genetic effects of petroleum fuels: cytogenetic monitoring of gasoline station attendants. Mutat Res Fundam Mol Mechan Mutag. https://doi.org/10.1016/0027-5107(95)00081-9

Article  Google Scholar 

Centers for Disease Control and Prevention (CDC) (2013) Very high blood lead levels among adults - United States, 2002–2011. MMWR Morb Mortal Wkly Rep 62

Chen Z, Huo X, Chen G et al (2021) Lead (Pb) exposure and heart failure risk. Environm Sci Pollut Res 28:28833–28847

CAS  Article  Google Scholar 

Chen Z, Lou J, Chen S et al (2006) Evaluating the genotoxic effects of workers exposed to lead using micronucleus assay, comet assay and TCR gene mutation test. Toxicology. https://doi.org/10.1016/j.tox.2006.03.016

Article  PubMed  Google Scholar 

Cheong HSJ, Seth I, Joiner MC, Tucker JD (2013) Relationships among micronuclei, nucleoplasmic bridges and nuclear buds within individual cells in the cytokinesis-block micronucleus assay. Mutagenesis. https://doi.org/10.1093/mutage/get020

Article  PubMed  Google Scholar 

Das U, De M (2013) Chromosomal study on lead exposed population. Int J Hum Genet. https://doi.org/10.1080/09723757.2013.11886197

Article  Google Scholar 

DerSimonian R, Laird N (2015) Meta-analysis in clinical trials revisited. Contemp Clin Trials 45:139–145

Article  Google Scholar 

de Souza ID, de Andrade AS, Dalmolin RJS (2018) Lead-interacting proteins and their implication in lead poisoning. Crit Rev Toxicol 48:375–386

Article  Google Scholar 

Dobrakowski M, Pawlas N, Kasperczyk A et al (2017) Oxidative DNA damage and oxidative stress in lead-exposed workers. Hum Exp Toxicol. https://doi.org/10.1177/0960327116665674

Article  PubMed  Google Scholar 

Dönmez H, Dursun N, Özkul Y, Demirtaş H (1998) Increased sister chromatid exchanges in workers exposed to occupational lead and zinc. Biol Trace Elem Res. https://doi.org/10.1007/BF02784046

Article  PubMed  Google Scholar 

Duydu Y (2022) Derivation of a biological limit value (BLV) for inorganic lead based on lead-induced genotoxicity in workers using the benchmark dose approach (BMD). J Trace Elem Med Biol. https://doi.org/10.1016/j.jtemb.2021.126894

Article  PubMed  Google Scholar 

Duydu Y, Süzen HS, Aydin A et al (2001) Correlation between lead exposure indicators and sister chromatid exchange (SCE) frequencies in lymphocytes from inorganic lead exposed workers. Arch Environ Contam Toxicol. https://doi.org/10.1007/s002440010244

Article  PubMed  Google Scholar 

Fenech M (1998) Important variables that influence base-line micronucleus frequency in cytokinesis-blocked lymphocytes - A biomarker for DNA damage in human populations. Mutat Res Fundam Mol Mechan Mutag 404:155–165

CAS  Article  Google Scholar 

Fenech M, Bonassi S (2011) The effect of age, gender, diet and lifestyle on DNA damage measured using micronucleus frequency in human peripheral blood lymphocytes. Mutagenesis 26:43–49

CAS  Article  Google Scholar 

Fenech M, Kirsch-Volders M, Rossnerova A et al (2013) HUMN project initiative and review of validation, quality control and prospects for further development of automated micronucleus assays using image cytometry systems. Int J Hyg Environ Health. https://doi.org/10.1016/j.ijheh.2013.01.008

Article  PubMed  Google Scholar 

Ferraz GA, Costa Neto A de O, Cerqueira E de MM, Meireles JRC (2016) Effects of age on the frequency of micronuclei and degenerative nuclear abnormalities. Revista Brasileira de Geriatria e Gerontologia https://doi.org/10.1590/1809-98232016019.150155

Flora G, Gupta D, Tiwari A (2012) Toxicity of lead: a review with recent updates. Interdisciplin Toxicol 5:47

CAS  Article  Google Scholar 

Fracasso ME, Perbellini L, Soldà S et al (2002) Lead induced DNA strand breaks in lymphocytes of exposed workers: role of reactive oxygen species and protein kinase C. Mutat Res Genet Toxicol Environ Mutag 515:159–169

CAS  Article  Google Scholar 

Furness DLF, Dekker GA, Hague WM et al (2010) Increased lymphocyte micronucleus frequency in early pregnancy is associated prospectively with pre-eclampsia and/or intrauterine growth restriction. Mutagenesis. https://doi.org/10.1093/mutage/geq032

Article  PubMed  PubMed Central  Google Scholar 

García-Lestón J, Roma-Torres J, Vilares M et al (2012) Genotoxic effects of occupational exposure to lead and influence of polymorphisms in genes involved in lead toxicokinetics and in DNA repair. Environ Int. https://doi.org/10.1016/j.envint.2012.03.001

Article  PubMed  Google Scholar 

Glei M, Schneider T, Schlörmann W (2016) Comet assay: an essential tool in toxicological research. Arch Toxicol 90:2315–2336

CAS  Article  Google Scholar 

Grover P, Rekhadevi PV, Danadevi K et al (2010) Genotoxicity evaluation in workers occupationally exposed to lead. Int J Hyg Environ Health. https://doi.org/10.1016/j.ijheh.2010.01.005

Article  PubMed  Google Scholar 

Hamurcu Z, Donmez H, Saraymen R, Demirtas H (2001) Micronucleus frequencies in workers exposed to lead, zinc, and cadmium. Biol Trace Elem Res. https://doi.org/10.1385/BTER:83:2:097

Article  PubMed  Google Scholar 

Hayashino Y, Noguchi Y, Fukui T (2005) Systemic evaluation and comparison of statistical tests for publication bias. J Epidemiol. https://doi.org/10.2188/jea.15.235

Article  PubMed  PubMed Central  Google Scholar 

Hozo SP, Djulbegovic B, Hozo I (2005) Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 5:1–10

Article  Google Scholar 

Iarmarcovai G, Sari-Minodier I, Chaspoul F et al (2005) Risk assessment of welders using analysis of eight metals by ICP-MS in blood and urine and DNA damage evaluation by the comet and micronucleus assays; influence of XRCC1 and XRCC3 polymorphisms. Mutagenesis. https://doi.org/10.1093/mutage/gei058

Article  PubMed  Google Scholar 

Ionescu ME, Ciocirlan M, Becheanu G et al (2011) Nuclear division index may predict neoplastic colorectal lesions. Maedica 6:173

PubMed  PubMed Central  Google Scholar 

Jannuzzi AT, Alpertunga B (2016) Evaluation of DNA damage and DNA repair capacity in occupationally lead-exposed workers. Toxicol Ind Health. https://doi.org/10.1177/0748233715590919

Article  PubMed  Google Scholar 

Kalahasthi R, Nagaraju R, Balachandar R, Bagepally BS (2022) Association between occupational lead exposure and immunotoxicity markers: a systematic review and meta-analysis. Toxicology 465:153047

CAS  Article  Google Scholar 

Karakaya AE, Ozcagli E, Ertas N, Sardas S (2005) Assessment of abnormal DNA repair responses and genotoxic effects in lead exposed workers. Am J Ind Med. https://doi.org/10.1002/ajim.20145

Article  PubMed  Google Scholar 

Kašuba V, Milić M, Zeljezić D et al (2020) Biomonitoring findings for occupational lead exposure in battery and ceramic tile workers using biochemical markers, alkaline comet assay, and micronucleus test coupled with fluorescence in situ hybridisation. Arh Hig Rada Toksikol. https://doi.org/10.2478/aiht-2020-71-3427

Article  PubMed  PubMed Central  Google Scholar 

Kašuba V, Rozgaj R, Milić M et al (2010) Evaluation of lead exposure in battery-manufacturing workers with focus on different biomarkers. J Appl Toxicol. https://doi.org/10.1002/jat.1497

Article  PubMed  Google Scholar 

Kašuba V, Rozgaj R, Milić M et al (2012) Evaluation of genotoxic effects of lead in pottery-glaze workers using micronucleus assay, alkaline comet assay and DNA diffusion assay. Int Arch Occup Environ Health. https://doi.org/10.1007/s00420-011-0726-4

留言 (0)

沒有登入
gif