Achievements, prospects and challenges in precision care for monogenic insulin-deficient and insulin-resistant diabetes

Saeedi P, Petersohn I, Salpea P et al (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract 157:107843. https://doi.org/10.1016/j.diabres.2019.107843

Article  PubMed  Google Scholar 

Bullard KM, Cowie CC, Lessem SE et al (2018) Prevalence of Diagnosed Diabetes in Adults by Diabetes Type - United States, 2016. MMWR Morb Mortal Wkly Rep 67(12):359–361. https://doi.org/10.15585/mmwr.mm6712a2

Article  PubMed  PubMed Central  Google Scholar 

Tattersall RB (1974) Mild familial diabetes with dominant inheritance. Q J Med 43(170):339–357

CAS  PubMed  Google Scholar 

Kahn CR, Podskalny JM (1980) Demonstration of a primary (? genetic) defect in insulin receptors in fibroblasts from a patient with the syndrome of insulin resistance and acanthosis nigricans type A. J Clin Endocrinol Metab 50(6):1139–1141. https://doi.org/10.1210/jcem-50-6-1139

CAS  Article  PubMed  Google Scholar 

Kadowaki T, Bevins CL, Cama A et al (1988) Two mutant alleles of the insulin receptor gene in a patient with extreme insulin resistance. Science 240(4853):787–790. https://doi.org/10.1126/science.2834824

CAS  Article  PubMed  Google Scholar 

Yoshimasa Y, Seino S, Whittaker J et al (1988) Insulin-resistant diabetes due to a point mutation that prevents insulin proreceptor processing. Science 240(4853):784–787. https://doi.org/10.1126/science.3283938

CAS  Article  PubMed  Google Scholar 

Hattersley AT, Turner RC, Permutt MA et al (1992) Linkage of type 2 diabetes to the glucokinase gene. Lancet 339(8805):1307–1310. https://doi.org/10.1016/0140-6736(92)91958-b

CAS  Article  PubMed  Google Scholar 

Froguel P, Vaxillaire M, Sun F et al (1992) Close linkage of glucokinase locus on chromosome 7p to early-onset non-insulin-dependent diabetes mellitus. Nature 356(6365):162–164. https://doi.org/10.1038/356162a0

CAS  Article  PubMed  Google Scholar 

Ellard S, Colclough K, Patel KA, Hattersley AT (2020) Prediction algorithms: pitfalls in interpreting genetic variants of autosomal dominant monogenic diabetes. J Clin Invest 130(1):14–16. https://doi.org/10.1172/JCI133516

Article  PubMed  Google Scholar 

Bonnefond A, Boissel M, Bolze A et al (2020) Pathogenic variants in actionable MODY genes are associated with type 2 diabetes. Nat Metab 2(10):1126–1134. https://doi.org/10.1038/s42255-020-00294-3

CAS  Article  PubMed  Google Scholar 

Philippe J, Derhourhi M, Durand E et al (2015) What Is the Best NGS Enrichment Method for the Molecular Diagnosis of Monogenic Diabetes and Obesity? PLoS One 10(11):e0143373. https://doi.org/10.1371/journal.pone.0143373

CAS  Article  PubMed  PubMed Central  Google Scholar 

Goodrich JK, Singer-Berk M, Son R et al (2021) Determinants of penetrance and variable expressivity in monogenic metabolic conditions across 77,184 exomes. Nat Commun 12(1):3505. https://doi.org/10.1038/s41467-021-23556-4

CAS  Article  PubMed  PubMed Central  Google Scholar 

Flannick J, Beer NL, Bick AG et al (2013) Assessing the phenotypic effects in the general population of rare variants in genes for a dominant Mendelian form of diabetes. Nat Genet 45(11):1380–1385. https://doi.org/10.1038/ng.2794

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hattersley AT, Patel KA (2017) Precision diabetes: learning from monogenic diabetes. Diabetologia 60(5):769–777. https://doi.org/10.1007/s00125-017-4226-2

Article  PubMed  PubMed Central  Google Scholar 

Bonnefond A, Shuldiner AR, Froguel P (2016) Historical Overview of Gene Discovery Methodologies in Type 2 Diabetes. In: Florez JC (ed) The Genetics of Type 2 Diabetes and Related Traits: Biology, Physiology and Translation. Springer International Publishing, Cham, pp 3–12

Chapter  Google Scholar 

Flanagan SE, Kapoor RR, Mali G et al (2010) Diazoxide-responsive hyperinsulinemic hypoglycemia caused by HNF4A gene mutations. Eur J Endocrinol 162(5):987–992. https://doi.org/10.1530/EJE-09-0861

CAS  Article  PubMed  PubMed Central  Google Scholar 

Haddouche A, Bellanne-Chantelot C, Rod A et al (2020) Liver adenomatosis in patients with hepatocyte nuclear factor-1 alpha maturity onset diabetes of the young (HNF1A-MODY): Clinical, radiological and pathological characteristics in a French series. J Diabetes 12(1):48–57. https://doi.org/10.1111/1753-0407.12959

CAS  Article  PubMed  Google Scholar 

Patel KA, Kettunen J, Laakso M et al (2017) Heterozygous RFX6 protein truncating variants are associated with MODY with reduced penetrance. Nat Commun 8(1):888. https://doi.org/10.1038/s41467-017-00895-9

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bonnycastle LL, Chines PS, Hara T et al (2013) Autosomal dominant diabetes arising from a Wolfram syndrome 1 mutation. Diabetes 62(11):3943–3950. https://doi.org/10.2337/db13-0571

CAS  Article  PubMed  PubMed Central  Google Scholar 

Colclough K, Ellard S, Hattersley A, Patel K (2021) Syndromic Monogenic Diabetes Genes Should be Tested in Patients With a Clinical Suspicion of MODY. Diabetes 71(3):530–537. https://doi.org/10.2337/db21-0517

CAS  Article  Google Scholar 

Saint-Martin C, Bouvet D, Bastide M, Chantelot CB, Monogenic Diabetes Study Group of the Societe Francophone du Diabète (2021) Gene Panel Sequencing of Patients With Monogenic Diabetes Brings to Light Genes Typically Associated With Syndromic Presentations. Diabetes 71(3):578–584. https://doi.org/10.2337/db21-0520

CAS  Article  Google Scholar 

Gloyn AL, Pearson ER, Antcliff JF et al (2004) Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 350(18):1838–1849. https://doi.org/10.1056/NEJMoa032922

CAS  Article  PubMed  Google Scholar 

Babenko AP, Polak M, Cave H et al (2006) Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N Engl J Med 355(5):456–466. https://doi.org/10.1056/NEJMoa055068

CAS  Article  PubMed  Google Scholar 

Bowman P, Mathews F, Barbetti F et al (2021) Long-term Follow-up of Glycemic and Neurological Outcomes in an International Series of Patients With Sulfonylurea-Treated ABCC8 Permanent Neonatal Diabetes. Diabetes Care 44(1):35–42. https://doi.org/10.2337/dc20-1520

CAS  Article  PubMed  Google Scholar 

Bowman P, Sulen A, Barbetti F et al (2018) Effectiveness and safety of long-term treatment with sulfonylureas in patients with neonatal diabetes due to KCNJ11 mutations: an international cohort study. Lancet Diabetes Endocrinol 6(8):637–646. https://doi.org/10.1016/S2213-8587(18)30106-2

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lanning MS, Carmody D, Szczerbinski L, Letourneau LR, Naylor RN, Greeley SAW (2018) Hypoglycemia in sulfonylurea-treated KCNJ11-neonatal diabetes: Mild-moderate symptomatic episodes occur infrequently but none involving unconsciousness or seizures. Pediatr Diabetes 19(3):393–397. https://doi.org/10.1111/pedi.12599

CAS  Article  PubMed  Google Scholar 

Boileau P, Wolfrum C, Shih DQ, Yang TA, Wolkoff AW, Stoffel M (2002) Decreased glibenclamide uptake in hepatocytes of hepatocyte nuclear factor-1alpha-deficient mice: a mechanism for hypersensitivity to sulfonylurea therapy in patients with maturity-onset diabetes of the young, type 3 (MODY3). Diabetes 51(Suppl 3):S343–S348. https://doi.org/10.2337/diabetes.51.2007.s343

CAS  Article  PubMed  Google Scholar 

Urbanova J, Andel M, Potockova J et al (2015) Half-Life of Sulfonylureas in HNF1A and HNF4A Human MODY Patients is not Prolonged as Suggested by the Mouse Hnf1a(-/-) Model. Curr Pharm Des 21(39):5736–5748. https://doi.org/10.2174/1381612821666151008124036

CAS  Article  PubMed  Google Scholar 

Pearson ER, Pruhova S, Tack CJ et al (2005) Molecular genetics and phenotypic characteristics of MODY caused by hepatocyte nuclear factor 4alpha mutations in a large European collection. Diabetologia 48(5):878–885. https://doi.org/10.1007/s00125-005-1738-y

CAS  Article  PubMed  Google Scholar 

Pearson ER, Starkey BJ, Powell RJ, Gribble FM, Clark PM, Hattersley AT (2003) Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet 362(9392):1275–1281. https://doi.org/10.1016/S0140-6736(03)14571-0

CAS  Article  PubMed  Google Scholar 

Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424. https://doi.org/10.1038/gim.2015.30

Article  PubMed  PubMed Central  Google Scholar 

Stankute I, Verkauskiene R, Blouin JL et al (2020) Systematic Genetic Study of Youth With Diabetes in a Single Country Reveals the Prevalence of Diabetes Subtypes, Novel Candidate Genes, and Response to Precision Therapy. Diabetes 69(5):1065–1071. https://doi.org/10.2337/db19-0974

CAS  Article  PubMed  Google Scholar 

Shepherd MH, Shields BM, Hudson M et al (2018) A UK nationwide prospective study of treatment change in MODY: genetic subtype and clinical characteristics predict optimal glycaemic control after discontinuing insulin and metformin. Diabetologia 61(12):2520–2527. https://doi.org/10.1007/s00125-018-4728-6

Article  PubMed  PubMed Central  Google Scholar 

Steele AM, Shields BM, Wensley KJ, Colclough K, Ellard S, Hattersley AT (2014) Prevalence of vascular complications among patients with glucokinase mutations and prolonged, mild hyperglycemia. JAMA 311(3):279–286. https://doi.org/10.1001/jama.2013.283980

CAS  Article  PubMed  Google Scholar 

Stride A, Shields B, Gill-Carey O et al (2014) Cross-sectional and longitudinal studies suggest pharmacological treatment used in patients with glucokinase mutations does not alter glycaemia. Diabetologia 57(1):54–56. https://doi.org/10.1007/s00125-013-3075-x

CAS 

留言 (0)

沒有登入
gif