Luminescent fac-[ReX(CO)3(phenyl-pyta)] (X = Cl, Br, I) complexes: influence of the halide ligand on the electronic properties in solution and in the solid state

Lee, L.C.-C., Leung, K.-K., & Lo, K.K.-W. (2017). Recent development of luminescent rhenium(I) tricarbonyl polypyridine complexes as cellular imaging reagents, anticancer drugs, and antibacterial agents. Dalton Transactions, 46, 16357–16380. https://doi.org/10.1039/c7dt03465b

CAS  Article  PubMed  Google Scholar 

Lo, K.K.-W. (2015). Luminescent rhenium(I) and iridium(III) polypyridine complexes as biological probes, imaging reagents, and photocytotoxic agents. Accounts of Chemical Research, 48, 2985–2995. https://doi.org/10.1021/acs.accounts.5b00211

CAS  Article  PubMed  Google Scholar 

Zhao, G.-W., Zhao, J.-H., Hu, Y.-X., Zhang, D.-Y., & Li, X. (2016). Recent advances of neutral rhenium(I) tricarbonyl complexes for application in organic light-emitting diodes. Synthetic Metals, 212, 131–141. https://doi.org/10.1016/j.synthmet.2015.12.014

CAS  Article  Google Scholar 

Choroba, K., Maroń, A., Świtlicka, A., Szłapa-Kula, A., Siwy, M., Grzelak, J., Maćkowski, S., Pedzinski, T., Schab-Balcerzak, E., & Machura, B. (2021). Carbazole effect on ground- and excited-state properties of rhenium(I) carbonyl complexes with extended terpy-like ligands. Dalton Transactions, 50, 3943–3958. https://doi.org/10.1039/d0dt04340k

CAS  Article  PubMed  Google Scholar 

Komreddy, V., Ensz, K., Nguyen, H., & Rillema, D. P. (2020). Synthesis and characterization of rhenium(I) 4,4′-dicarboxy-2,2′-bipyridine tricarbonyl complexes for solar energy conversion. Inorganica Chimica Acta, 511, 119815. https://doi.org/10.1016/j.ica.2020.119815

CAS  Article  Google Scholar 

Ji, X., Zhang, P., Wei, W., Zhang, H., & Xia, B. (2018). Theoretical investigation on the electronic structures and spectroscopic properties as well as the features as dyes in dyesensitized solar cells of quinonoid containing Re(I) complexes. Journal of Organometallic Chemistry, 862, 40. https://doi.org/10.1016/j.jorganchem.2018.02.034

CAS  Article  Google Scholar 

Kameta, N., Aoyagi, M., & Asakawa, M. (2017). Enhancement of the photocatalytic activity of rhenium(I) complexes by encapsulation in light-harvesting soft nanotubes. Chemical Communications, 53, 10116. https://doi.org/10.1039/c7cc05337a

CAS  Article  PubMed  Google Scholar 

Petyuk, M. Y., Berezin, A. S., Gushchin, A. L., Bagryanskaya, I. Yu., Baranov, A. Yu., & Artem’ev, A. V. (2021). Luminescent Re(I) scorpionates supported by tris(2-pyridyl)phosphine and its derivatives. Inorganica Chim Acta, 516, 120136. https://doi.org/10.1016/j.ica.2020.120136

CAS  Article  Google Scholar 

Jin, G.-X., Wang, T., Sun, Y., Li, Y.-L., & Ma, J.-P. (2020). Photochromic rhenium-based molecular rectangles: syntheses, structures, photophysical properties, and electrochemistry. Inorganic Chemistry, 59, 15019–15027. https://doi.org/10.1021/acs.inorgchem.0c01845

CAS  Article  PubMed  Google Scholar 

Calupitan, J. P., Poirot, A., Wang, J., Delavaux-Nicot, B., Wolff, M., Jaworska, M., Métivier, R., Benoist, E., Allain, C., & Fery-Forgues, S. (2021). Mechanical modulation of the solid-state luminescence of tricarbonyl rhenium(I) complexes through the interplay between two triplet excited states. Chemistry. A European Journal, 27, 4191–4196. https://doi.org/10.1002/chem.202005245

CAS  Article  PubMed  Google Scholar 

Piletska, K. O., Domasevitch, K. V., Gusev, A. N., Shul’gin, V. F., & Shtemenko, A. V. (2015). fac-Tricarbonyl rhenium(I) complexes of triazole-based ligands: synthesis, X-ray structure and luminescent properties. Polyhedron, 102, 699–704. https://doi.org/10.1016/j.poly.2015.10.030

CAS  Article  Google Scholar 

Bertrand, H. C., Clède, S., Guillot, R., Lambert, F., & Policar, C. (2014). Luminescence modulations of rhenium tricarbonyl complexes induced by structural variations. Inorganic Chemistry, 53, 6204–6223. https://doi.org/10.1021/ic5007007

CAS  Article  PubMed  Google Scholar 

Gómez-Iglesias, P., Guyon, F., Khatyr, A., Ulrich, G., Knorr, M., Martín-Alvarez, J. M., Miguel, D., & Villafañe, F. (2015). Luminescent rhenium(I) tricarbonyl complexes with pyrazolylamidino ligands: photophysical, electrochemical, and computational studies. Dalton Transactions, 44, 17516–17528. https://doi.org/10.1039/c5dt02793d

Article  PubMed  Google Scholar 

Pino-Cuevas, A., Carballo, R., Muñoz, L., & Vázquez-López, E. M. (2015). Rhenium complexes of ligands based on stilbene—synthesis, characterization, reactivity, and conformational analysis. European Journal of Inorganic Chemistry, 2015(26), 4402–4411. https://doi.org/10.1002/ejic.201500500

CAS  Article  Google Scholar 

Wright, P. J., Affleck, M. G., Muzzioli, S., Skelton, S. W., Raiteri, P., Silvester, D. S., Stagni, S., & Massi, M. (2013). Ligand-induced structural, photophysical, and electrochemical variations in tricarbonyl rhenium(I) tetrazolato complexes. Organometallics, 32, 3728–3737. https://doi.org/10.1021/om400356n

CAS  Article  Google Scholar 

Kaim, W., Kramer, H. E. A., Conny, V., & Rieker, J. (1989). Synthesis, electrochemistry and emission spectroscopy in fluid solution of four isomeric (α-diimine) Re(CO)3Hal complexes. Journal of Organometallic Chemistry, 367, 107–115. https://doi.org/10.1016/0022-328X(89)87212-2

CAS  Article  Google Scholar 

Saldías, M., Guzmán, N., Palominos, F., Sandoval-Altamirano, C., Günther, G., Pizarro, N., & Vega, A. (2019). Electronic and photophysical properties of ReI(CO)3Br complexes modulated by pyrazolyl−pyridazine ligands. ACS Omega, 4, 4679–4690. https://doi.org/10.1021/acsomega.8b03306

CAS  Article  Google Scholar 

Sun, S.-S., & Lees, A. J. (2000). Self-assembly triangular and square rhenium(I) tricarbonyl complexes: a comprehensive study of their preparation, electrochemistry, photophysics, photochemistry, and host−guest properties. Journal of the American Chemical Society, 122, 8956–8967. https://doi.org/10.1021/ja001677p

CAS  Article  Google Scholar 

Casson, L. A., Muzzioli, S., Raiteri, P., Skelton, B. W., Stagni, S., Massi, S., & Brown, D. H. (2011). N-Heterocyclic carbenes as π*-acceptors in luminescent Re(I) triscarbonyl complexes. Dalton Transactions, 40, 11960–11967. https://doi.org/10.1039/C1DT11233C

CAS  Article  PubMed  Google Scholar 

Valdés, E., Cepeda-Plaza, M., Günther, G., Vega, A., Palacios, R., Gómez, M. L., & Pizarro, N. (2020). An amine linker group modulates luminescent properties in a Rhenium(I) tricarbonyl complex. How can it be applied for ratiometric oxygen sensing? Dyes and Pigments, 172, 107787. https://doi.org/10.1016/j.dyepig.2019.107787

CAS  Article  Google Scholar 

Carreño, A., Solís-Céspedes, E., Zúñiga, C., Nevermann, J., Rivera-Zaldívar, M. M., Gacitúa, M., Ramírez-Osorio, A., Páez-Hernández, D., Arratia-Pérez, R., & Fuentes, J. A. (2019). Cyclic voltammetry, relativistic DFT calculations and biological test of cytotoxicity in walled-cell models of two classical rhenium (I) tricarbonyl complexes with 5-amine-1,10-phenanthroline. Chemical Physics Letters, 715, 231–238. https://doi.org/10.1016/j.cplett.2018.11.043

CAS  Article  Google Scholar 

Carreño, A., Páez-Hernández, D., Zúñiga, C., Ramírez-Osorio, A., Pizarro, N., Vega, A., Solis-Céspedes, E., Rivera-Zaldívar, M. M., Silva, A., & Fuentes, J. A. (2021). Exploring rhenium (I) complexes as potential fluorophores for walled-cells (yeasts and bacteria): photophysics, biocompatibility, and confocal microscopy. Dyes and Pigments, 184, 108876. https://doi.org/10.1016/j.dyepig.2020.108876

CAS  Article  Google Scholar 

Ranasinghe, K., Handunnetti, H., Perera, I. C., & Perera, T. (2016). Synthesis and characterization of novel rhenium(I) complexes towards potential biological imaging applications. Chemistry Central Journal, 10, 71. https://doi.org/10.1186/s13065-016-0218-4

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chakraborty, I., Carrington, S. J., & Mascharak, P. K. (2014). Design strategies to improve the sensitivity of photoactive metal carbonyl complexes (photoCORMs) to visible light and their potential as CO-donors to biological targets. Accounts of Chemical Research, 47, 2603–2611. https://doi.org/10.1021/ar500172f

CAS  Article  PubMed  Google Scholar 

Chakraborty, I., Carrington, S. J., & Mascharak, P. K. (2014). Photodelivery of CO by Designed PhotoCORMs: correlation between absorption in the visible region and metal–CO bond labilization in carbonyl complexes. ChemMedChem, 9, 1266–1274. https://doi.org/10.1002/cmdc.201402007

CAS  Article  PubMed  Google Scholar 

Gauthier, E. S., Abella, L., Hellou, N., Darquié, B., Caytan, E., Roisnel, T., Vanthuyne, N., Favereau, L., Srebro-Hooper, M., Williams, J. A. G., Autschbach, J., & Crassous, J. (2020). Long-lived circularly polarized phosphorescence in helicene-NHC rhenium(I) complexes: the influence of helicene, halogen, and stereochemistry on emission properties. Angewandte Chemie International Edition, 59, 8394–8400. https://doi.org/10.1002/anie.202002387

CAS  Article  PubMed  Google Scholar 

El Nahhas, A., Cannizzo, A., van Mourik, F., Blanco-Rodríguez, A. M., Záliš, S., Vlček, A., & Chergui, M. (2010). Ultrafast excited-state dynamics of [Re(L)(CO)3(bpy)]n complexes: involvement of the solvent. Journal of Physical Chemistry A, 114, 6361–6369. https://doi.org/10.1021/jp101999m

CAS  Article  PubMed  Google Scholar 

Cannizzo, A., Blanco-Rodríguez, A. M., El Nahhas, A., Šebera, J., Záliš, S., Vlček, A., & Chergui, M. (2008). Femtosecond fluorescence and intersystem crossing in rhenium(I) carbonyl-bipyridine complexes. Journal of the American Chemical Society, 130, 8967–8974. https://doi.org/10.1021/ja710763w

CAS  Article  PubMed  Google Scholar 

Harabuchi, Y., Eng, J., Gindensperger, E., Taketsugu, T., Maeda, S., & Daniel, C. (2016). Exploring the mechanism of ultrafast intersystem crossing in rhenium(I) carbonyl bipyridine halide complexes: Key vibrational modes and spin−vibronic quantum dynamics. Journal of Chemical Theory and Computation, 12, 2335–2345. https://doi.org/10.1021/acs.jctc.6b00080

CAS  Article  PubMed  Google Scholar 

Gourlaouen, C., Eng, J., Otsuka, M., Gindensperger, E., & Daniel, C. (2015). Quantum chemical interpretation of ultrafast luminescence decay and intersystem crossings in rhenium(I) carbonyl bipyridine complexes. Journal of Chemical Theory and Computation, 11, 99–110. https://doi.org/10.1021/ct500846n

CAS  Article  PubMed  Google Scholar 

Heydová, R., Gindensperger, E., Romano, R., Sýkora, J., Vlček, A., Jr., Záliš, S., & Daniel, C. (2012). Spin−orbit treatment of UV−vis absorption spectra and photophysics of rhenium (I) carbonyl-bipyridine complexes: MS-CASPT2 and TD-DFT analysis. Journal of Physical Chemistry A, 116, 11319–11329. https://doi.org/10.1021/jp305461z

CAS  Article  PubMed  Google Scholar 

Rossenaar, B. D., Stufkens, D. J., & Vlček, A., Jr. (1996). Halide-dependent change of the lowest-excited-state character from MLCT to XLCT for the complexes Re(X)(CO)3(α-diimine) (X = Cl, Br, I; α-diimine = bpy, iPr-PyCa, iPr-DAB) studied by resonance Raman, time-resolved absorption, and emission spectroscopy. Inorganic Chemistry, 35, 2902–2909. https://doi.org/10.1021/ic9509802

CAS  Article  Google Scholar 

Wei, Q., Dai, Y., Chen, C., Shi, L., Si, Z., Wan, Y., Zuo, Q., Han, D., & Duan, Q. (2018). Aggregation-induced phosphorescent emission enhancement (AIPEE) Re(I) complexes: synthesize, photophysical and theoretical simulations. Journal of Molecular Structure, 1171, 786–792. https://doi.org/10.1016/j.molstruc.2018.06.058

CAS  Article  Google Scholar 

Hu, Y.-X., Zhao, G.-W., Dong, Y., Lü, Y.-L., Li, X., & Zhang, D.-Y. (2017). New rhenium(I) complex with thiadiazole-annelated 1,10-phenanthroline for highly efficient phosphorescent OLEDs. Dyes and Pigments, 137, 569–575. https://doi.org/10.1016/j.dyep

留言 (0)

沒有登入
gif