The effect of lactoferrin on ULK1 and ATG13 genes expression in breast cancer cell line MCF7 and bioinformatics studies of protein interaction between lactoferrin and the autophagy initiation complex

Russo, M., & Russo, G. L. M. (2018). Autophagy inducers in cancer. Biochem Pharmaco, 1(153), 51–61.

Article  Google Scholar 

Martina, J. A., Chen, Y., Gucek, M., & Puertollano, R. (2012). MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy, 8, 903–914. https://doi.org/10.4161/auto.19653.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sridharan S, Jain K. Basu A, Regulation of autophagy by kinases. Cancers 3, 2630–2654. https://doi.org/10.3390/cancers3022630

Aizawa, S., Hoki, M., & Yamamuro, Y. (2017). Lactoferrin promotes autophagy via AMP-activated protein kinase activation through low-density lipoprotein receptor-related protein 1. Biochem Biophys Res Commun, 493(1), 509–513.

CAS  PubMed  Article  Google Scholar 

Mukhopadhyay, S., Sinha, N., Das, D. N., Panda, P. K., Naik, P. P., & Bhutia, S. K. (2016). Clinical relevance of autophagic therapy in cancer: Investigating the current trends, challenges, and future prospects. Crit Rev Clin Lab Sci. 53(4), 228–252.

Galluzzi, L., Buqué, A., Kepp, O., Zitvogel, L., & Kroemer, G. (2017). Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol., 17.2, 97–111.

Article  Google Scholar 

Santana-Codina N, Mancias J, Kimmelman AC, The role of autophagy in cancer. Annu Rev Cancer Biol. 1, 19–39.

Galluzzi, L., Pietrocola, F., Bravo‐San Pedro, J. M., Amaravadi, R. K., Baehrecke, E. H., Cecconi, F., & Kroemer, G. (2015). Autophagy in malignant transformation and cancer progression. The EMBO J., 34.7, 856–880.

Article  Google Scholar 

Wilde, L., Tanson, K., Curry, J., & Martinez-Outschoorn, U. (2018). Autophagy in cancer: a complex relationship. Biochem J., 475.11, 1939–1954.

Article  Google Scholar 

Wu, C. P., & Ambudkar, S. V. (2014). The pharmacological impact of ATP-binding cassette drug transporters on vemurafenib-based therapy. Acta Pharm Sin B., 4.2, 105–111.

Article  Google Scholar 

Ouyang, L., Shi, Z., Zhao, S., Wang, F. T., Zhou, T. T., Liu, B., & Bao, J. K. (2012). Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif., 45. 6, 487–498.

Article  Google Scholar 

Zhao, Y. G., Codogno, P., & Zhang, H. (2021). Machinery regulation and pathophysiological implications of autophagosome maturation. Nat Rev Mol Cell Biol, 22, 733–750.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hara, T., Takamura, A., Kishi, C., Iemura, S. I., Natsume, T., Guan, J. L., & Mizushima, N. (2008). FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol., 181.3, 497–510.

Article  Google Scholar 

Randhawa, R., Sehgal, M., Singh, T. R., Duseja, A., & Changotra, H. (2015). Unc-51 like kinase 1 (ULK1) in silico analysis for biomarker identification: a vital component of autophagy. Gene, 562.1, 40–49.

Article  Google Scholar 

Li, F., Chung, T., & Vierstra, R. D. (2014). AUTOPHAGY-RELATED11 plays a critical role in general autophagy-and senescence-induced mitophagy in Arabidopsi. The Plant Cell, 26.2, 788–807.

Article  Google Scholar 

Hara, T., & Mizushima, N. (2009). Role of ULK-FIP200 complex in mammalian autophagy: FIP200, a counterpart of yeast Atg17. Autophagy, 5.1, 85–87.

Article  Google Scholar 

Hosokawa, N., Hara, T., Kaizuka, T., Kishi, C., Takamura, A., Miura, Y., & Mizushima, N. (2009). Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy. Mol Biol Cell., 20.7, 1981–1991.

Article  Google Scholar 

Ganley, I. G., Lam, D. H., Wang, J., Ding, X., Chen, S., & Jiang, X. (2009). ULK1· ATG13· FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biolo Chem, 284.18, 12297–12305.

Article  Google Scholar 

Mercer, C. A., Kaliappan, A., & Dennis, P. B. (2009). A novel human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy, 5.5, 649–662.

Article  Google Scholar 

Dong, Z., Wang, Y., Liu, W. Z., Shu, Q. S., Cai, J., & Tang, Y. C. (2020). AMPK/mTOR signaling in autophagy regulation during cisplatin-induced acute kidney injury. Front Physiol, 11, 1679.

Google Scholar 

González-Chávez, S. A., Arévalo-Gallegos, S., & Rascón-Cruz, Q. (2009). Lactoferrin: structure, function and applications. Int J Antimicrob Agents, 33.4, 301–e1.

Google Scholar 

Stevens, R. G., Jones, D. Y., Micozzi, M. S., & Taylor, P. R. (1988). Body iron stores and the risk of cancer. N Engl J Med., 319.16, 1047–1052.

Article  Google Scholar 

Grosso, R. A., Caldarone, P. V. S., Sánchez, M. C., Chiabrando, G. A., Colombo, M. I., & Fader, C. M. (2019). Hemin induces autophagy in a leukemic erythroblast cell line through the LRP1 receptor. Biosci Rep., 39, 1.

Article  Google Scholar 

Sui, X., Chen, R., Wang, Z., Huang, Z., Kong, N., Zhang, M., & Pan, H. (2013). Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis., 10, e838.

Article  Google Scholar 

Benkert, P., Biasini, M., & Schwede, T. (2011). Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics, 27, 343–350.

CAS  PubMed  Article  Google Scholar 

Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res., 35, W407–W410.

PubMed  PubMed Central  Article  Google Scholar 

Anderson, R. J., Weng, Z., Campbell, R. K., & Jiang, X. (2005). Main-chain conformational tendencies of amino acids. Proteins, 60.4, 679–89.

Article  Google Scholar 

Desta, I. T., Porter, K. A., Xia, B., Kozakov, D., & Vajda, S. (2020). Performance and its limits in rigid body protein-protein docking. Structure, 28. 9, 1071–1081.

Article  Google Scholar 

Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein-protein docking. Nature Protocols, 12.2, 255–278.

Article  Google Scholar 

Zhou, S., Zhao, L., Kuang, M., Zhang, B., Liang, Z., Yi, T., & Zhao, X. (2012). Autophagy in tumorigenesis and cancer therapy: Dr. Jekyll or Mr. Hyde. Cancer Lett., 323.2, 115–127.

Article  Google Scholar 

Zhang, Y., Nicolau, A., Lima, C. F., & Rodrigues, L. R. (2014). Bovine lactoferrin induces cell cycle arrest and inhibits mTOR signaling in breast cancer cells. Nutr Cancer, 66.8, 1371–1385.

Article  Google Scholar 

Bononi, A., Agnoletto, C., De Marchi, E., Marchi, S., Patergnani, S., Bonora, M., & Pinton, P. (2011). Protein kinases and phosphatases in the control of cell fate. Enzyme Res., 2011, 329098 https://doi.org/10.4061/2011/329098.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mizushima, N. (2010). The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol., 22. 2, 132–139.

Article  Google Scholar 

Tang, J., Deng, R., Luo, R. Z., Shen, G. P., Cai, M. Y., Du, Z. M., & Zhu, X. F. (2012). Low expression of ULK1 is associated with operable breast cancer progression and is an adverse prognostic marker of survival for patients. Breast Cancer Res Treat., 134. 2, 549–560.

Article  Google Scholar 

Khan, S. H., & Kumar, R. (2012). Role of an intrinsically disordered conformation in AMPK-mediated phosphorylation of ULK1 and regulation of autophagy. Mol Biosyst., 8.1, 91–96.

Article  Google Scholar 

Xue Y, Wang D, Peng D. (2021) Bioinformatics Technologies in Autophagy Research In. Autophagy: Biology and Diseases, Springer, Singapore, 387–453.

Lee, J. W., Park, S., Takahashi, Y., & Wang, H. G. (2010). The association of AMPK with ULK1 regulates autophagy. PloS one, 5.11, e15394.

Article  Google Scholar 

Dwivedi, P., & Greis, K. D. (2017). Granulocyte colony-stimulating factor receptor signaling in severe congenital neutropenia, chronic neutrophilic leukemia, and related malignancies. Exp Hematol, 46, 9–20.

CAS  PubMed  Article  Google Scholar 

Dwivedi, P. (2021). ROS mediated apoptotic pathways in primary effusion lymphoma: comment on induction of apoptosis by Shikonin through ROS-mediated intrinsic and extrinsic pathways in primary effusion lymphoma. Transl Oncol., 14, 101061.

PubMed  PubMed Central  Article  Google Scholar 

Xiao, Y., Monitto, C. L., Minhas, K. M., & Sidransky, D. (2004). Lactoferrin down-regulates G1 cyclin dependent kinases during growth arrest of head and neck cancer cells. Clin Cancer Res., 10, 8683–8686.

CAS  PubMed  Article  Google Scholar 

Hsu, Y. H., Chiu, I. J., Lin, Y. F., Chen, Y. J., Lee, Y. H., & Chiu, H. W. (2020). Lactoferrin contributes a renoprotective effect in acute kidney injury and early renal fibrosis. Pharmaceutics, 12.5, 434.

Article  Google Scholar 

Dwivedi, P., Rodriguez, J., Ibe, N. U., & Weers, P. M. M. (2016). Deletion of the N- or C-terminal helix of apolipophorin III to create a four-helix bundle protein. Biochem, 5.55(26), 3607–3615.

Article  Google Scholar 

Behrends, C., Sowa, M. E., Gygi, S. P., & Harper, J. (2010). Network organization of the human autophagy system. Nature, 466.7302, 68–76.

Article  Google Scholar 

Denton, D., Nicolson, S., & Kumar, S. (2012). Cell death by autophagy: facts and apparent artefacts. Cell Death Differ, 19.1, 87–95.

Article  Google Scholar 

留言 (0)

沒有登入
gif