m6A transferase METTL3 regulates endothelial-mesenchymal transition in diabetic retinopathy via lncRNA SNHG7/KHSRP/MKL1 axis

Diabetic retinopathy is one of the microvascular complications in diabetic patients and the leading cause of blindness worldwide. The levels of METTL3, lncRNA SNHG7, KHSRP, MKL1, endothelial and mesenchymal markers were determined by RT-qPCR or western blot assays in vitro and in vivo. H&E staining was used to observe the retinal structure in a mouse model of DR. The expression levels of METTL3 and SNHG7 were significantly downregulated in DR patients, DR mice and high glucose-induced HRMECs cells. Notably, METTL3 installed the m6A modification and enhanced the stability of SNHG7. Besides, METTL3 inhibited HRMECs EndoMT by promoting the expression of SNHG7. Additionally, SNHG7 was found to weaken MKL1 mRNA stability by binding to the RNA-binding protein KHSRP. Furthermore, we verified that METTL3 regulated EndoMT in DR through the SNHG7/MKL1 axis. We conclude that METTL3 regulates endothelial-mesenchymal transition in DR via the SNHG7/KHSRP/MKL1 axis, providing a new target for DR treatment.

留言 (0)

沒有登入
gif