Preparation and photocatalytic properties of dye-sensitization titanium dioxide/graphene composites for removal of MB

Bai X, Hua Z, Zhang X et al (2014) Uniformly distributed anatase TiO2 nanoparticles on graphene: synthesis, characterization, and photocatalytic application. J Alloy Compd 599:10–18. https://doi.org/10.1016/j.jallcom.2014.02.049

CAS  Article  Google Scholar 

Bo-yu Ju, Yang WS, Zhang Q et al (2020) Research progress on the characterization and repair of graphene defects. Int J Minerals Metall Mater 27:1179–1190. https://doi.org/10.1007/s12613-020-2031-2

Article  Google Scholar 

Cao H, Zhu Y, Tan X et al (2010) Fabrication of TiO2/CdS composite fiber via an electrospinning method. New J Chem 34:1116–1119. https://doi.org/10.1039/B9NJ00737G

CAS  Article  Google Scholar 

Dominik E, Alan H et al (2008) Carbon–inorganic hybrid materials: the carbon-nanotube/TiO2 interface. Adv Mater 20:1787–1793. https://doi.org/10.1002/adma.200702835

CAS  Article  Google Scholar 

Ehsan, et al (2018) Synthesis of a nitrogen-doped titanium dioxide–reduced graphene oxide nanocomposite for photocatalysis under visible light irradiation. Particuology 41:48–57. https://doi.org/10.1016/j.partic.2017.12.013

CAS  Article  Google Scholar 

Eswaraiah V, Aravind SSJ, Ramaprabhu S (2011) Top down method for synthesis of highly conducting graphene by exfoliation of graphite oxide using focused solar radiation. J Mater Chem 21:6800–6803. https://doi.org/10.1039/C1JM10808E

CAS  Article  Google Scholar 

Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1:1–2. https://doi.org/10.1016/S1389-5567(00)00002-2

CAS  Article  Google Scholar 

Gunnagol RM, Rabinal M (2019) TiO2/rGO/CuS nanocomposites for efficient photocatalytic degradation of rhodamine-B dye. Chem Sel 4:6167–6176. https://doi.org/10.1002/slct.201901041

CAS  Article  Google Scholar 

Hamed NKA et al (2022) Photocatalytic degradation of methylene blue by flowerlike rutile-phase TiO2 film grown via hydrothermal method. J Sol-Gel Sci Technol 102:637–648. https://doi.org/10.1007/s10971-021-05691-y

CAS  Article  Google Scholar 

Huan X, Wei W, Jin-Ming W (2018) Sheet-on-belt branched TiO2 (B)/rGO powders with enhanced photocatalytic activity. Beilstein J Nanotechnol 9:1550–1557. https://doi.org/10.3762/bjnano.9.146

CAS  Article  Google Scholar 

Khan SA, Arshad Z, Shahid S et al (2019) Synthesis of TiO2/graphene ocide nanocomposites for their enhanced photocatalytic activity against methylene blue dye and ciprofloxacin. Compos Part B Eng 175:107120. https://doi.org/10.1016/j.compositesb.2019.107120

CAS  Article  Google Scholar 

Li K et al (2013) Preparation of graphene/TiO2 composites by nonionic surfactant strategy and their si-mulated sunlight and visible light photocatalytic activity towards representative aqueous POPs degradation. J Hazard Mater 250:19–28. https://doi.org/10.1016/j.jhazmat.2013.01.069

CAS  Article  Google Scholar 

Li J, Zhou SL et al (2013) Hydrothermal preparation of P25–graphene composite with enhanced adsorption and photocatalytic degradation of dyes. Chem Eng J 219:486–491. https://doi.org/10.1016/j.cej.2013.01.031

CAS  Article  Google Scholar 

Liu G, Wang L, Yang HG et al (2010) Titania-based photocatalysts—crystal growth, doping and heterostructuring. J Mater Chem 20:831–843. https://doi.org/10.1039/B909930A

Article  Google Scholar 

Liu S et al (2013) Graphene facilitated visible light photodegradation of methylene blue over titanium dioxide photocatalysts. Chem Eng J 214:298–303. https://doi.org/10.1016/j.cej.2012.10.058

CAS  Article  Google Scholar 

Long M, Qin Y, Chen C et al (2013) Origin of visible light photoactivity of reduced graphene oxide/TiO2 by in situ hydrothermal growth of undergrown TiO2 with graphene oxide. J Phys Chem C 117:16734–16741. https://doi.org/10.1021/jp4058109

CAS  Article  Google Scholar 

Mull B (2017) Photocatalytic degradation of toluene, butyl acetate and limonene under UV and visible light with titanium dioxide-graphene oxide as photocatalyst. Environments 4:9. https://doi.org/10.3390/environments4010009

Article  Google Scholar 

Ping C et al (2012) TiO2–graphene nanocomposites for photocatalytic hydrogen production from splitting water. Int J Hydrog Energy 37:2224–2230. https://doi.org/10.1016/j.ijhydene.2011.11.004

CAS  Article  Google Scholar 

Qi C et al (2017) Preparation of TiO2 nanotubes/reduced graphene oxide binary nanocomposites enhanced photocatalytic properties. J Mater Sci Mater Electron 28:9416–9422. https://doi.org/10.1007/s10854-017-6683-2

CAS  Article  Google Scholar 

Raliya R et al (2017) Photocatalytic degradation of methyl orange dye by pristine titanium dioxide, zinc oxide, and graphene oxide nanostructures and their composites under visible light irradiation. Appl Nanosci 7:253–259. https://doi.org/10.1007/s13204-017-0565-z

CAS  Article  Google Scholar 

Shen X et al (2018) Fabrication of a magnetite/diazonium functionalized-reduced graphene oxide hybrid as an easily regenerated adsorbent for efficient removal of chlorophenols from aqueous solution. RSC Adv 8:7351–7360. https://doi.org/10.1039/C8RA00503F

CAS  Article  Google Scholar 

Tayel A, Ramadan A, Seoud OE (2018) Titanium dioxide/graphene and titanium dioxide/graphene oxide nanocomposites: synthesis, characterization and photocatalytic applications for water decontamination. Catalysts 8:491. https://doi.org/10.3390/catal8110491

CAS  Article  Google Scholar 

Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130. https://doi.org/10.1063/1.1674108

CAS  Article  Google Scholar 

Wang Y et al (2020) Progress in the functional modification of graphene/graphene oxide: a review. RSC Adv 10:15328–15345. https://doi.org/10.1039/D0RA01068E

Article  Google Scholar 

You Z, Han W, Cheng HM (2016) Research progress and potential applications for graphene/polymer composites. New Carbon Mater 31:555–567

Google Scholar 

Zhai C et al (2013) Enhanced photoelectrocatalytic performance of titanium dioxide/carbon cloth based photoelectrodes by graphene modification under visible-light irradiation. J Hazard Mater 263:291–298. https://doi.org/10.1016/j.jhazmat.2013.09.013

CAS  Article  Google Scholar 

Zhang Y, Tang ZR, Fu X et al (2010) TiO2−graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2−graphene truly different from other TiO2−carbon composite materials. ACS Nano 4:7303–7314. https://doi.org/10.1021/nn1024219

CAS  Article  Google Scholar 

Zhang H, Wang X, Li N et al (2018) Synthesis and characterization of TiO2/graphene oxide nanocomposites for photoreduction of heavy metal ions in reverse osmosis concentrate. RSC Adv 8:34241–34251. https://doi.org/10.1039/C8RA06681G

CAS  Article  Google Scholar 

Zhang S et al (2020) Recent developments of two-dimensional graphene-based composites in visible-light photocatalysis for eliminating persistent organic pollutants from waste water. Chem Eng J 390:124642. https://doi.org/10.1016/j.cej.2020.124642

CAS  Article  Google Scholar 

Zhou K et al (2011) Preparation of graphene–TiO2 composites with enhanced photocatalytic activity. New J Chem 35:353–359. https://doi.org/10.1039/C0NJ00623H

CAS  Article  Google Scholar 

Zhu Z, Cai H, Sun DW (2018) Titanium dioxide (TiO2) photocatalysis technology for nonthermal inactivation of microorganisms in foods. Trends Food Sci Technol 75:23–35. https://doi.org/10.1016/j.tifs.2018.02.018

CAS  Article  Google Scholar 

Zickler GA et al (2006) A reconsideration of the relationship between the crystallite size La of carbons determined by X-ray diffraction and Raman spectroscopy. Carbon 44:3239–3246. https://doi.org/10.1016/j.carbon.2006.06.029

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif