Structure of the SHOC2–MRAS–PP1C complex provides insights into RAF activation and Noonan syndrome

Simanshu, D. K., Nissley, D. V. & McCormick, F. RAS proteins and their regulators in human disease. Cell 170, 17–33 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Yaeger, R. & Corcoran, R. B. Targeting alterations in the RAF–MEK pathway. Cancer Discov. 9, 329–341 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Longo, J. F. & Carroll, S. L. The RASopathies: biology, genetics and therapeutic options. Adv. Cancer Res 153, 305–341 (2022).

PubMed  Article  Google Scholar 

Lavoie, H. & Therrien, M. Regulation of RAF protein kinases in ERK signalling. Nat. Rev. Mol. Cell Biol. 16, 281–298 (2015).

CAS  PubMed  Article  Google Scholar 

Park, E. et al. Architecture of autoinhibited and active BRAF–MEK1–14-3-3 complexes. Nature 575, 545–550 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Simanshu, D. K. & Morrison, D. K. A structure is worth a thousand words: new insights for RAS and RAF regulation. Cancer Discov. 12, 899–912 (2022).

Tran, T. H. et al. KRAS interaction with RAF1 RAS-binding domain and cysteine-rich domain provides insights into RAS-mediated RAF activation. Nat. Commun. 12, 1176 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cookis, T. & Mattos, C. Crystal structure reveals the full Ras–Raf interface and advances mechanistic understanding of Raf activation. Biomolecules 11, 996 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Molzan, M. et al. Impaired binding of 14-3-3 to C-RAF in Noonan syndrome suggests new approaches in diseases with increased Ras signaling. Mol. Cell. Biol. 30, 4698–4711 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rodriguez-Viciana, P., Oses-Prieto, J., Burlingame, A., Fried, M. & McCormick, F. A phosphatase holoenzyme comprised of Shoc2/Sur8 and the catalytic subunit of PP1 functions as an M-Ras effector to modulate Raf activity. Mol. Cell 22, 217–230 (2006).

CAS  PubMed  Article  Google Scholar 

Young, L. C. et al. SHOC2–MRAS–PP1 complex positively regulates RAF activity and contributes to Noonan syndrome pathogenesis. Proc. Natl Acad. Sci. USA 115, E10576–E10585 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Jeoung, M., Abdelmoti, L., Jang, E. R., Vander Kooi, C. W. & Galperin, E. Functional integration of the conserved domains of Shoc2 scaffold. PLoS ONE 8, e66067 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cordeddu, V. et al. Mutation of SHOC2 promotes aberrant protein N-myristoylation and causes Noonan-like syndrome with loose anagen hair. Nat. Genet. 41, 1022–1026 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hannig, V., Jeoung, M., Jang, E. R., Phillips, J. A. 3rd & Galperin, E. A novel SHOC2 variant in rasopathy. Hum. Mutat. 35, 1290–1294 (2014).

CAS  PubMed  PubMed Central  Google Scholar 

Motta, M. et al. Clinical and functional characterization of a novel RASopathy-causing SHOC2 mutation associated with prenatal-onset hypertrophic cardiomyopathy. Hum. Mutat. 40, 1046–1056 (2019).

CAS  PubMed  Google Scholar 

Young, L. C. et al. An MRAS, SHOC2, and SCRIB complex coordinates ERK pathway activation with polarity and tumorigenic growth. Mol. Cell 52, 679–692 (2013).

CAS  PubMed  Article  Google Scholar 

Sulahian, R. et al. Synthetic lethal interaction of SHOC2 sepletion with MEK inhibition in RAS-driven cancers. Cell Rep. 29, 118–134 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Jones, G. G. et al. SHOC2 phosphatase-dependent RAF dimerization mediates resistance to MEK inhibition in RAS-mutant cancers. Nat. Commun. 10, 2532 (2019).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Kaplan, F. M. et al. SHOC2 and CRAF mediate ERK1/2 reactivation in mutant NRAS-mediated resistance to RAF inhibitor. J. Biol. Chem. 287, 41797–41807 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Terai, H. et al. SHOC2 is a critical modulator of sensitivity to EGFR-TKIs in non-small cell lung cancer cells. Mol. Cancer Res. 19, 317–328 (2021).

CAS  PubMed  Article  Google Scholar 

Boned Del Rio, I. et al. SHOC2 complex-driven RAF dimerization selectively contributes to ERK pathway dynamics. Proc. Natl Acad. Sci. USA 116, 13330–13339 (2019).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Han, K. et al. CRISPR screens in cancer spheroids identify 3D growth-specific vulnerabilities. Nature 580, 136–141 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Young, L. C. & Rodriguez-Viciana, P. MRAS: a close but understudied member of the RAS family. Cold Spring Harb. Perspect. Med. 8, a033621 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kota, P. et al. M-Ras/Shoc2 signaling modulates E-cadherin turnover and cell-cell adhesion during collective cell migration. Proc. Natl Acad. Sci. USA 116, 3536–3545 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Higgins, E. M. et al. Elucidation of MRAS-mediated Noonan syndrome with cardiac hypertrophy. JCI Insight 2, e91225 (2017).

PubMed  PubMed Central  Article  Google Scholar 

Suzuki, H. et al. Severe Noonan syndrome phenotype associated with a germline Q71R MRAS variant: a recurrent substitution in RAS homologs in various cancers. Am. J. Med. Genet. A 179, 1628–1630 (2019).

CAS  PubMed  Google Scholar 

Verbinnen, I., Ferreira, M. & Bollen, M. Biogenesis and activity regulation of protein phosphatase 1. Biochem. Soc. Trans. 45, 89–99 (2017).

CAS  PubMed  Article  Google Scholar 

Korrodi-Gregorio, L., Esteves, S. L. & Fardilha, M. Protein phosphatase 1 catalytic isoforms: specificity toward interacting proteins. Transl. Res. 164, 366–391 (2014).

PubMed  Article  CAS  Google Scholar 

Peti, W., Nairn, A. C. & Page, R. Structural basis for protein phosphatase 1 regulation and specificity. FEBS J. 280, 596–611 (2013).

CAS  PubMed  Article  Google Scholar 

Bertola, D. et al. The recurrent PPP1CB mutation p.Pro49Arg in an additional Noonan-like syndrome individual: broadening the clinical phenotype. Am. J. Med. Genet. A 173, 824–828 (2017).

CAS  PubMed  Article  Google Scholar 

Gripp, K. W. et al. A novel rasopathy caused by recurrent de novo missense mutations in PPP1CB closely resembles Noonan syndrome with loose anagen hair. Am. J. Med. Genet. A 170, 2237–2247 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Huckstadt, V., Chinton, J., Gomez, A., Obregon, M. G. & Gravina, L. P. Noonan syndrome with loose anagen hair with variants in the PPP1CB gene: First familial case reported. Am. J. Med. Genet A 185, 1256–1260 (2021).

PubMed  Article  Google Scholar 

Zambrano, R. M. et al. Further evidence that variants in PPP1CB cause a rasopathy similar to Noonan syndrome with loose anagen hair. Am. J. Med. Genet A 173, 565–567 (2017).

PubMed  Article  Google Scholar 

Snead, K., Wall, V., Ambrose, H., Esposito, D. & Drew, M. Polycistronic baculovirus expression of SUGT1 enables high-yield production of recombinant leucine-rich repeat proteins and protein complexes. Protein Expr. Purif. 193, 106061 (2022).

CAS  PubMed  Article  Google Scholar 

Selfors, L. M., Schutzman, J. L., Borland, C. Z. & Stern, M. J. soc-2 encodes a leucine-rich repeat protein implicated in fibroblast growth factor receptor signaling. Proc. Natl Acad. Sci. USA 95, 6903–6908 (1998).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ye, M. et al. Crystal structure of M-Ras reveals a GTP-bound “off” state conformation of Ras family small GTPases. J. Biol. Chem. 280, 31267–31275 (2005).

CAS  PubMed  Article  Google Scholar 

Choy, M. S. et al. Understanding the antagonism of retinoblastoma protein dephosphorylation by PNUTS provides insights into the PP1 regulatory code. Proc. Natl Acad. Sci. USA 111, 4097–4102 (2014).

CAS  PubMed  PubMed Central  Article 

留言 (0)

沒有登入
gif