Organization, dynamics and mechanoregulation of integrin-mediated cell–ECM adhesions

Humphrey, J. D., Dufresne, E. R. & Schwartz, M. A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15, 802–812 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

SenGupta, S., Parent, C. A. & Bear, J. E. The principles of directed cell migration. Nat. Rev. Mol. Cell Biol. 22, 529–547 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Romani, P., Valcarcel-Jimenez, L., Frezza, C. & Dupont, S. Crosstalk between mechanotransduction and metabolism. Nat. Rev. Mol. Cell Biol. 22, 22–38 (2021).

CAS  PubMed  Article  Google Scholar 

Cooper, J. & Giancotti, F. G. Integrin signaling in cancer: mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell 35, 347–367 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bonnans, C., Chou, J. & Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15, 786–801 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kechagia, J. Z., Ivaska, J. & Roca-Cusachs, P. Integrins as biomechanical sensors of the microenvironment. Nat. Rev. Mol. Cell Biol. 20, 457–473 (2019).

CAS  PubMed  Article  Google Scholar 

Hayward, M. K., Muncie, J. M. & Weaver, V. M. Tissue mechanics in stem cell fate, development, and cancer. Dev. Cell 56, 1833–1847 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hamidi, H. & Ivaska, J. Every step of the way: integrins in cancer progression and metastasis. Nat. Rev. Cancer 18, 533–548 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chastney, M. R., Conway, J. R. W. & Ivaska, J. Integrin adhesion complexes. Curr. Biol. 31, R536–R542 (2021).

CAS  PubMed  Article  Google Scholar 

Bachmann, M., Kukkurainen, S., Hytonen, V. P. & Wehrle-Haller, B. Cell adhesion by integrins. Physiol. Rev. 99, 1655–1699 (2019).

CAS  PubMed  Article  Google Scholar 

Kadry, Y. A. & Calderwood, D. A. Chapter 22: Structural and signaling functions of integrins. Biochim. Biophys. Acta Biomembr. 1862, 183206 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Humphries, J. D., Chastney, M. R., Askari, J. A. & Humphries, M. J. Signal transduction via integrin adhesion complexes. Curr. Opin. Cell Biol. 56, 14–21 (2019).

CAS  PubMed  Article  Google Scholar 

Slack, R. J., Macdonald, S. J. F., Roper, J. A., Jenkins, R. G. & Hatley, R. J. D. Emerging therapeutic opportunities for integrin inhibitors. Nat. Rev. Drug Discov. 21, 60–78 (2022).

CAS  PubMed  Article  Google Scholar 

Yamada, K. M., Doyle, A. D. & Lu, J. Cell–3D matrix interactions: recent advances and opportunities. Trends Cell Biol. https://doi.org/10.1016/j.tcb.2022.03.002 (2022).

Article  PubMed  Google Scholar 

Sun, Z., Costell, M. & Fassler, R. Integrin activation by talin, kindlin and mechanical forces. Nat. Cell Biol. 21, 25–31 (2019).

CAS  PubMed  Article  Google Scholar 

Seetharaman, S. et al. Microtubules tune mechanosensitive cell responses. Nat. Mater. 21, 366–377 (2022).

CAS  PubMed  Article  Google Scholar 

Seetharaman, S. & Etienne-Manneville, S. Microtubules at focal adhesions — a double-edged sword. J. Cell Sci. https://doi.org/10.1242/jcs.232843 (2019).

Article  PubMed  Google Scholar 

Bouvard, D. et al. Functional consequences of integrin gene mutations in mice. Circ. Res. 89, 211–223 (2001).

CAS  PubMed  Article  Google Scholar 

Julich, D., Geisler, R. & Holley, S. A. Integrin α5 and Delta/Notch signaling have complementary spatiotemporal requirements during zebrafish somitogenesis. Dev. Cell 8, 575–586 (2005).

PubMed  Article  Google Scholar 

Williams, B. D. & Waterston, R. H. Genes critical for muscle development and function in Caenorhabditis elegans identified through lethal mutations. J. Cell Biol. 124, 475–490 (1994).

CAS  PubMed  Article  Google Scholar 

DeSimone, D. W., Dzamba, B. & Davidson, L. A. Using Xenopus embryos to investigate integrin function. Methods Enzymol. 426, 403–414 (2007).

CAS  PubMed  Article  Google Scholar 

Maartens, A. P. & Brown, N. H. Anchors and signals: the diverse roles of integrins in development. Curr. Top. Dev. Biol. 112, 233–272 (2015).

CAS  PubMed  Article  Google Scholar 

Luo, B. H., Carman, C. V. & Springer, T. A. Structural basis of integrin regulation and signaling. Annu. Rev. Immunol. 25, 619–647 (2007).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Campbell, I. D. & Humphries, M. J. Integrin structure, activation, and interactions. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a004994 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Cormier, A. et al. Cryo-EM structure of the αvβ8 integrin reveals a mechanism for stabilizing integrin extension. Nat. Struct. Mol. Biol. 25, 698–704 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Campbell, M. G. et al. Cryo-EM reveals integrin-mediated TGF-β activation without release from latent TGF-β. Cell 180, 490–501.e16 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Schumacher, S. et al. Structural insights into integrin α5β1 opening by fibronectin ligand. Sci. Adv. https://doi.org/10.1126/sciadv.abe9716 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Nesic, D. et al. Electron microscopy shows that binding of monoclonal antibody PT25-2 primes integrin αIIbβ3 for ligand binding. Blood Adv. 5, 1781–1790 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sorrentino, S. et al. Structural analysis of receptors and actin polarity in platelet protrusions. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2105004118 (2021). This cryo-electron tomography study of endogenous platelet αIIbβ3 integrin in intact platelets reveals heterogeneity in integrin conformations and resolves a bent unbound integrin structure.

Article  PubMed  PubMed Central  Google Scholar 

Moore, T. I., Aaron, J., Chew, T. L. & Springer, T. A. Measuring integrin conformational change on the cell surface with super-resolution microscopy. Cell Rep. 22, 1903–1912 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Li, J. et al. Conformational equilibria and intrinsic affinities define integrin activation. EMBO J. 36, 629–645 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Li, J. & Springer, T. A. Integrin extension enables ultrasensitive regulation by cytoskeletal force. Proc. Natl Acad. Sci. USA 114, 4685–4690 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Li, J., Yan, J. & Springer, T. A. Low-affinity integrin states have faster ligand-binding kinetics than the high-affinity state. eLife https://doi.org/10.7554/eLife.73359 (2021). This detailed analysis of ligand binding kinetics for α4β1 and α5β1 integrins reveals that low-affinity states are both more abundant on the cell surface and bind ligand faster than high-affinity states, suggesting that ligand binding may precede activation by inside-out signalling.

Article  PubMed  PubMed Central  Google Scholar 

Mould, A. P. et al. Evidence that monoclonal antibodies directed against the integrin β subunit plexin/semaphorin/integrin domain stimulate function by inducing receptor extension. J. Biol. Chem. 280, 4238–4246 (2005).

CAS  PubMed  Article  Google Scholar 

Kiema, T. et al. The molecular basis of filamin binding to integrins and competition with talin. Mol. Cell 21, 337–347 (2006).

CAS  PubMed  Article  Google Scholar 

Liu, J. et al. Structural mechanism of integrin inactivation by filamin. Nat. Struct. Mol. Biol. 22, 383–389 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Liu, W., Draheim, K. M., Zhang, R., Calderwood, D. A. & Boggon, T. J. Mechanism for KRIT1 release of ICAP1-mediated suppression of integrin activation. Mol. Cell 49, 719–729 (2013).

CAS  PubMed 

留言 (0)

沒有登入
gif