RNA-targeting CRISPR–Cas systems

Koonin, E. V., Wolf, Y. I. & Katsnelson, M. I. Inevitability of the emergence and persistence of genetic parasites caused by evolutionary instability of parasite-free states. Biol. Direct 12, 1–12 (2017).

Article  Google Scholar 

Frost, L. S., Leplae, R., Summers, A. O. & Toussaint, A. Mobile genetic elements: The agents of open source evolution. Nat. Rev. Microbiol. 3, 722–732 (2005).

CAS  PubMed  Article  Google Scholar 

Van Valen, L. A new evolutionary law. Evol. Theory 1, 1–30 (1973).

Google Scholar 

Koonin, E. V. Viruses and mobile elements as drivers of evolutionary transitions. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150442 (2016).

Article  Google Scholar 

Bernheim, A. & Sorek, R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat. Rev. Microbiol. 18, 113–119 (2020).

CAS  PubMed  Article  Google Scholar 

Tesson, F. et al. Systematic and quantitative view of the antiviral arsenal of prokaryotes. Nat. Commun. 13, 2561 (2022).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rocha, E. P. C. & Bikard, D. Microbial defenses against mobile genetic elements and viruses: who defends whom from what? PLoS Biol. 20, e3001514 (2022).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hampton, H. G., Watson, B. N. J. & Fineran, P. C. The arms race between bacteria and their phage foes. Nature 577, 327–336 (2020).

CAS  PubMed  Article  Google Scholar 

Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).

CAS  PubMed  Article  Google Scholar 

Deveau, H. et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190, 1390–1400 (2008).

CAS  PubMed  Article  Google Scholar 

Barrangou, R. & Horvath, P. A decade of discovery: CRISPR functions and applications. Nat. Microbiol. 2, 17092 (2017).

CAS  PubMed  Article  Google Scholar 

Datsenko, K. A. et al. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat. Commun. 3, 1–7 (2012).

Article  Google Scholar 

Swarts, D. C., Mosterd, C., van Passel, M. W. J. & Brouns, S. J. J. CRISPR interference directs strand specific spacer acquisition. PLoS ONE 7, e35888 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Nussenzweig, P. M., McGinn, J. & Marraffini, L. A. Cas9 cleavage of viral genomes primes the acquisition of new immunological memories. Cell Host Microbe 26, 515–526.e6 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Carte, J., Wang, R., Li, H., Terns, R. M. & Terns, M. P. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev. 22, 3489–3496 (2008).

CAS  PubMed  PubMed Central  Article  Google Scholar 

East-Seletsky, A. et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 538, 270–273 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Brouns, S. J. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hille, F. et al. The biology of CRISPR-Cas: backward and forward. Cell 172, 1239–1259 (2018).

CAS  PubMed  Article  Google Scholar 

Bernheim, A., Bikard, D., Touchon, M. & Rocha, E. P. C. Atypical organizations and epistatic interactions of CRISPRs and cas clusters in genomes and their mobile genetic elements. Nucleic Acids Res. 48, 748–760 (2020).

CAS  PubMed  Google Scholar 

Jia, N. & Patel, D. J. Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins. Nat. Rev. Mol. Cell Biol. 22, 563–579 (2021).

CAS  PubMed  Article  Google Scholar 

Wilkinson, M. et al. Structural basis for the inhibition of RecBCD by Gam and its synergistic antibacterial effect with quinolones. Elife 5, 1–12 (2016).

Article  Google Scholar 

Shah, M. et al. A phage-encoded anti-activator inhibits quorum sensing in Pseudomonas aeruginosa. Mol. Cell 81, 571–583.e6 (2021).

CAS  PubMed  Article  Google Scholar 

Bandyopadhyay, P. K., Studier, F. W., Hamilton, D. L. & Yuan, R. Inhibition of the type I restriction-modification enzymes EcoB and EcoK by the gene 0.3 protein of bacteriophage T7. J. Mol. Biol. 182, 567–578 (1985).

CAS  PubMed  Article  Google Scholar 

Deveau, H., Garneau, J. E. & Moineau, S. CRISPR/Cas system and its role in phage-bacteria interactions. Annu. Rev. Microbiol. 64, 475–493 (2010).

CAS  PubMed  Article  Google Scholar 

Hutinet, G., Lee, Y., de Crécy-lagard, V. & Weigele, P. R. Hypermodified DNA in viruses of E. coli and Salmonella. EcoSalPlus 9, eESP00282019 (2021).

Google Scholar 

Bryson, A. L. et al. Covalent modification of bacteriophage T4 DNA inhibits CRISPRCas9. mBio https://doi.org/10.1128/mBio.00648-15 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Vlot, M. et al. Bacteriophage DNA glucosylation impairs target DNA binding by type I and II but not by type V CRISPR–Cas effector complexes. Nucleic Acids Res. 46, 873–885 (2018).

CAS  PubMed  Article  Google Scholar 

Mendoza, S. D. et al. A bacteriophage nucleus-like compartment shields DNA from CRISPR nucleases. Nature 577, 244–248 (2020).

CAS  PubMed  Article  Google Scholar 

Malone, L. M. et al. A jumbo phage that forms a nucleus-like structure evades CRISPR–Cas DNA targeting but is vulnerable to type III RNA-based immunity. Nat. Microbiol. 5, 48–55 (2020).

CAS  PubMed  Article  Google Scholar 

Jiang, W., Samai, P. & Marraffini, L. A. Degradation of phage transcripts by CRISPR-associated RNases enables type III CRISPR-Cas immunity. Cell 164, 710–721 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lopatina, A., Tal, N. & Sorek, R. Abortive infection: bacterial suicide as an antiviral immune strategy. Annu. Rev. Virol. 7, 371–384 (2020).

CAS  PubMed  Article  Google Scholar 

Neri, U. et al. A five-fold expansion of the global RNA virome reveals multiple new clades of RNA bacteriophages. bioRxiv https://doi.org/10.1101/2022.02.15.480533 (2022).

Article  Google Scholar 

Wolf, Y. I. et al. Doubling of the known set of RNA viruses by metagenomic analysis of an aquatic virome. Nat. Microbiol. 5, 1262–1270 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Artamonova, D. et al. Spacer acquisition by type III CRISPR–Cas system during bacteriophage infection of Thermus thermophilus. Nucleic Acids Res. 48, 9787–9803 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Maniv, I., Jiang, W., Bikard, D. & Marraffini, L. A. Impact of different target sequences on type III CRISPR-Cas immunity. J. Bacteriol. 198, 941–950 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Manica, A., Zebec, Z., Steinkellner, J. & Schleper, C. Unexpectedly broad target recognition of the CRISPR-mediated virus defence system in the archaeon Sulfolobus solfataricus. Nucleic Acids Res. 41, 10509–10517 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Johnson, K., Learn, B. A., Estrella, M. A. & Bailey, S. Target sequence requirements of a type III-B CRISPR-Cas immune system. J. Biol. Chem. 294, 10290–10299 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Pyenson, N. C., Gayvert, K., Varble, A., Elemento, O. & Marraffini, L. A. Broad targeting specificity during bacterial type III CRISPR-Cas immunity constrains viral escape. Cell Host Microbe 22, 343–353.e3 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gleditzsch, D. et al. PAM identification by CRISPR-Cas effector complexes: diversified mechanisms and structures. RNA Biol. 16, 504–517 (2019).

PubMed  Article  Google Scholar 

Meeske, A. J. & Marraffini, L. A. RNA guide complementarity prevents self-targeting in type VI CRISPR systems. Mol. Cell 71, 791–801.e3 (2018).

留言 (0)

沒有登入
gif