Rubiarbonol B induces RIPK1-dependent necroptosis via NOX1-derived ROS production

Annibaldi A, Meier P. Checkpoints in TNF-induced cell death: implications in inflammation and cancer. Trends Mol Med. 2018;24(1):49–65. https://doi.org/10.1016/j.molmed.2017.11.002.

CAS  Article  PubMed  Google Scholar 

Banskota S, Regmi SC, Kim JA. NOX1 to NOX2 switch deactivates AMPK and induces invasive phenotype in colon cancer cells through overexpression of MMP-7. Mol Cancer. 2015;14:123. https://doi.org/10.1186/s12943-015-0379-0.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Basnet BB, Liu L, Chen B, Suleimen YM, Yu H, Guo S, et al. Four new cytotoxic arborinane type triterpenes from the endolichenic fungus Myrothecium inundatum. Planta Med. 2019;85(9–10):701–7. https://doi.org/10.1055/a-0855-4051.

CAS  Article  PubMed  Google Scholar 

Bertrand MJ, Vandenabeele P. The Ripoptosome: death decision in the cytosol. Mol Cell. 2011;43(3):323–5. https://doi.org/10.1016/j.molcel.2011.07.007.

CAS  Article  PubMed  Google Scholar 

Brenner D, Blaser H, Mak TW. Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol. 2015;15(6):362–74. https://doi.org/10.1038/nri3834.

CAS  Article  PubMed  Google Scholar 

Byun HS, Zhou W, Park I, Kang K, Lee SR, Piao X, et al. C-27-carboxylated oleanane triterpenoids up-regulate TRAIL DISC assembly via p38 MAPK and CHOP-mediated DR5 expression in human glioblastoma cells. Biochem Pharmacol. 2018;158:243–60. https://doi.org/10.1016/j.bcp.2018.10.019.

CAS  Article  PubMed  Google Scholar 

Chen TY, Chi KH, Wang JS, Chien CL, Lin WW. Reactive oxygen species are involved in FasL-induced caspase-independent cell death and inflammatory responses. Free Radic Biol Med. 2009;46(5):643–55. https://doi.org/10.1016/j.freeradbiomed.2008.11.022.

CAS  Article  PubMed  Google Scholar 

Croce CM, Reed JC. Finally, An Apoptosis-Targeting Therapeutic for Cancer. Cancer Res. 2016;76(20):5914–20. https://doi.org/10.1158/0008-5472.can-16-1248.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Degterev A, Ofengeim D, Yuan J. Targeting RIPK1 for the treatment of human diseases. Proc Natl Acad Sci U S A. 2019;116(20):9714–22. https://doi.org/10.1073/pnas.1901179116.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Dickens LS, Boyd RS, Jukes-Jones R, Hughes MA, Robinson GL, Fairall L, et al. A death effector domain chain DISC model reveals a crucial role for caspase-8 chain. Mol Cell. 2012;47(2):291–305. https://doi.org/10.1016/j.molcel.2012.05.004.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Dondelinger Y, Aguileta MA, Goossens V, Dubuisson C, Grootjans S, Dejardin E, et al. RIPK3 contributes to TNFR1-mediated RIPK1 kinase-dependent apoptosis in conditions of cIAP1/2 depletion or TAK1 kinase inhibition. Cell Death Differ. 2013;20(10):1381–92. https://doi.org/10.1038/cdd.2013.94.

Dondelinger Y, Jouan-Lanhouet S, Divert T, Theatre E, Bertin J, Gough PJ, et al. NF-κB-independent role of IKKα/IKKβ in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling. Mol Cell. 2015;60(1):63–76. https://doi.org/10.1016/j.molcel.2015.07.032.

CAS  Article  PubMed  Google Scholar 

Dynek JN, Goncharov T, Dueber EC, Fedorova AV, Izrael-Tomasevic A, Phu L, et al. c-IAP and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling. EMBO J. 2010;29(24):4198–209. https://doi.org/10.1038/emboj.2010.300.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Fritsch J, Stephan M, Tchikov V, Winoto-Morbach S, Gubkina S, Kabelitz D, et al. Cell fate decisons regulated by K63 ubiquitination of tumor necrosis factor receptor 1. Mol Cell Biol. 2014;34(17):3214–28. https://doi.org/10.1128/mcb.00048-14.

Article  PubMed  PubMed Central  Google Scholar 

Fulda S. Modulation of apoptosis by natural products for cancer therapy. Planta Med. 2010;76(11):1075–9. https://doi.org/10.1055/s-0030-1249961.

CAS  Article  PubMed  Google Scholar 

Fulda S, Kroemer G. Targeting mitochondrial apoptosis by betulinic acid in human cancers. Drug Discov Today. 2009;14(17–18):885–90. https://doi.org/10.1016/j.drudis.2009.05.015.

CAS  Article  PubMed  Google Scholar 

Geiszt M, Lekstrom K, Witta J, Leto TL. Proteins homologous to p47phox and p67phox support superoxide production by NAD(P)H oxidase 1 in colon epithelial cells. J Biol Chem. 2003;278(22):20006–12. https://doi.org/10.1074/jbc.m301289200.

CAS  Article  PubMed  Google Scholar 

Geng J, Ito Y, Shi L, Amin P, Chu J, Ouchida AT, et al. Regulation of RIPK1 activation by TAK1-mediated phosphorylation dictates apoptosis and necroptosis. Nat Commun. 2017;8(1):359. https://doi.org/10.1038/s41467-017-00406-w.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gerges S, Rohde K, Fulda S. Cotreatment with Smac mimetics and demethylating agents induces both apoptotic and necroptotic cell death pathways in acute lymphoblastic leukemia cells. Cancer Lett. 2016;375(1):127–32. https://doi.org/10.1016/j.canlet.2016.02.040.

CAS  Article  PubMed  Google Scholar 

Gill BS, Kumar S, Navgeet. Triterpenes in cancer: significance and their influence. Mol Biol Rep. 2016;43(9):881–96. https://doi.org/10.1007/s11033-016-4032-9.

CAS  Article  PubMed  Google Scholar 

Goossens V, Grooten J, De Vos K, Fiers W. Direct evidence for tumor necrosis factor- induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proc Natl Acad Sci U S A. 1995;92(18):8115–9. https://doi.org/10.1073/pnas.92.18.8115.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 2013;12(12):931–47. https://doi.org/10.1038/nrd4002.

CAS  Article  PubMed  Google Scholar 

Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70. https://doi.org/10.1016/s0092-8674(00)81683-9.

CAS  Article  PubMed  Google Scholar 

He GW, Günther C, Thonn V, Yu YQ, Martini E, Buchen B, et al. Regression of apoptosis-resistant colorectal tumors by induction of necroptosis in mice. J Exp Med. 2017;214(6):1655–62. https://doi.org/10.1084/jem.20160442.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hopkins-Donaldson S, Ziegler A, Kurtz S, Bigosch C, Kandioler D, Ludwig C, et al. Silencing of death receptor and caspase-8 expression in small cell lung carcinoma 8 cell lines and tumors by DNA methylation. Cell Death Differ. 2003;10(3):356–64. https://doi.org/10.1038/sj.cdd.4401157.

CAS  Article  PubMed  Google Scholar 

Humphries F, Yang S, Wang B, Moynagh PN. RIP kinases: key decision makers in cell death and innate immunity. Cell Death Differ. 2015;22(2):225–36. https://doi.org/10.1038/cdd.2014.126.

CAS  Article  PubMed  Google Scholar 

Juhasz A, Markel S, Gaur S, Liu H, Lu J, Jiang G, et al. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction. J Biol Chem. 2017;292(19):7866–87. https://doi.org/10.1074/jbc.M116.768283.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D, Daley-Bauer LP, Hakem R, et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature. 2011;471(7338):368–72. https://doi.org/10.1038/nature09857.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kang K, Lee SR, Piao X, Hur GM. Post- translational modification of the death receptor complex as a potential therapeutic target in cancer. Arch Pharm Res. 2019;42(1):76–87. https://doi.org/10.1007/s12272-018-01107-8.

CAS  Article  PubMed  Google Scholar 

Kang K, Quan KT, Byun HS, Lee SR, Piao X, Ju E, et al. 3-O-acetylrubianol C (3AR-C) induces RIPK1-dependent programmed cell death by selective inhibition of IKKβ. FASEB J. 2020;34(3):4369–83. https://doi.org/10.1096/fj.201902547r.

CAS  Article  PubMed  Google Scholar 

Kim HS, Lee JW, Soung YH, Park WS, Kim SY, Lee JH, et al. Inactivating mutations of caspase-8 gene in colorectal carcinomas. Gastroenterology. 2003;125(3):708–15. https://doi.org/10.1016/s0016-5085(03)01059-x.

CAS  Article  PubMed  Google Scholar 

Kim YS, Morgan MJ, Choksi S, Liu ZG. TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol Cell. 2007;26(5):675–87. https://doi.org/10.1016/j.molcel.2007.04.021.

CAS  Article  PubMed  Google Scholar 

Kim KA, Kim JY, Lee YA, Song KJ, Min D, Shin MH. NOX1 participates in ROS-dependent cell death of colon epithelial Caco2 cells induced by Entamoeba histolytica. Microbes Infect. 2011;13(12–13):1052–61. https://doi.org/10.1016/j.micinf.2011.06.001.

CAS  Article  PubMed  Google Scholar 

Koo GB, Morgan MJ, Lee DG, Kim WJ, Yoon JH, Koo JS, et al. Methylation- dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics. Cell Res. 2015;25(6):707–25. https://doi.org/10.1038/cr.2015.56.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lafont E, Draber P, Rieser E, Reichert M, Kupka S, de Miguel D, et al. TBK1 and IKKε prevent TNF-induced cell death by RIPK1 phosphorylation. Nat Cell Biol. 2018;20(12):1389–99. https://doi.org/10.1038/s41556-018-0229-6.

CAS  Article 

留言 (0)

沒有登入
gif