KIR-based inhibitory CARs overcome CAR-NK cell trogocytosis-mediated fratricide and tumor escape

Joly, E. & Hudrisier, D. What is trogocytosis and what is its purpose? Nat. Immunol. 4, 815 (2003).

CAS  PubMed  Google Scholar 

Dance, A. Core concept: cells nibble one another via the under-appreciated process of trogocytosis. Proc. Natl Acad. Sci. USA 116, 17608–17610 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Bettadapur, A., Miller, H. W. & Ralston, K. S. Biting off what can be chewed: trogocytosis in health, infection, and disease. Infect. Immun. 88, e00930-19 (2020).

PubMed  PubMed Central  Google Scholar 

Ahmed, K. A., Munegowda, M. A., Xie, Y. & Xiang, J. Intercellular trogocytosis plays an important role in modulation of immune responses. Cell Mol. Immunol. 5, 261–269 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Miyake, K. & Karasuyama, H. The role of trogocytosis in the modulation of immune cell functions. Cells 10, 1255 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Alhajjat, A. M. et al. Trogocytosis as a mechanistic link between chimerism and prenatal tolerance. Chimerism 4, 126–131 (2013).

PubMed  PubMed Central  Google Scholar 

Ford McIntyre, M. S., Young, K. J., Gao, J., Joe, B. & Zhang, L. Cutting edge: in vivo trogocytosis as a mechanism of double negative regulatory T cell-mediated antigen-specific suppression. J. Immunol. 181, 2271–2275 (2008).

CAS  PubMed  Google Scholar 

Hamieh, M. et al. CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature 568, 112–116 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Cheng, M., Chen, Y., Xiao, W., Sun, R. & Tian, Z. NK cell-based immunotherapy for malignant diseases. Cell Mol. Immunol. 10, 230–252 (2013).

CAS  PubMed  PubMed Central  Google Scholar 

Fang, F., Xiao, W. & Tian, Z. NK cell-based immunotherapy for cancer. Semin. Immunol. 31, 37–54 (2017).

CAS  PubMed  Google Scholar 

Myers, J. A. & Miller, J. S. Exploring the NK cell platform for cancer immunotherapy. Nat. Rev. Clin. Oncol. 18, 85–100 (2021).

PubMed  Google Scholar 

Koehl, U. et al. Advances in clinical NK cell studies: donor selection, manufacturing and quality control. Oncoimmunology 5, e1115178 (2016).

CAS  PubMed  Google Scholar 

Daher, M., Melo Garcia, L., Li, Y. & Rezvani, K. CAR-NK cells: the next wave of cellular therapy for cancer. Clin. Transl. Immunol. 10, e1274 (2021).

CAS  Google Scholar 

Li, Y., Hermanson, D. L., Moriarity, B. S. & Kaufman, D. S. Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell 23, 181–192.e5 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Caumartin, J. et al. Trogocytosis-based generation of suppressive NK cells. EMBO J. 26, 1423–1433 (2007).

CAS  PubMed  PubMed Central  Google Scholar 

Nakamura, K. et al. Fratricide of natural killer cells dressed with tumor-derived NKG2D ligand. Proc. Natl Acad. Sci. USA 110, 9421–9426 (2013).

CAS  PubMed  PubMed Central  Google Scholar 

Domaica, C. I. et al. Tumour-experienced T cells promote NK cell activity through trogocytosis of NKG2D and NKp46 ligands. EMBO Rep. 10, 908–915 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

Lu, T. et al. Hijacking TYRO3 from tumor cells via trogocytosis enhances NK-cell effector functions and proliferation. Cancer Immunol. Res. 10, 1229–1241 (2021).

Google Scholar 

Miner, C. A., Giri, T. K., Meyer, C. E., Shabsovich, M. & Tripathy, S. K. Acquisition of activation receptor ligand by trogocytosis renders NK cells hyporesponsive. J. Immunol. 194, 1945–1953 (2015).

CAS  PubMed  Google Scholar 

Elliott, J. M. & Yokoyama, W. M. Unifying concepts of MHC-dependent natural killer cell education. Trends Immunol. 32, 364–372 (2011).

CAS  PubMed  PubMed Central  Google Scholar 

Anfossi, N. et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity 25, 331–342 (2006).

CAS  PubMed  Google Scholar 

Bryceson, Y. T. & Long, E. O. Line of attack: NK cell specificity and integration of signals. Curr. Opin. Immunol. 20, 344–352 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Pegram, H. J., Andrews, D. M., Smyth, M. J., Darcy, P. K. & Kershaw, M. H. Activating and inhibitory receptors of natural killer cells. Immunol. Cell Biol. 89, 216–224 (2011).

PubMed  Google Scholar 

Hudrisier, D., Aucher, A., Puaux, A. L., Bordier, C. & Joly, E. Capture of target cell membrane components via trogocytosis is triggered by a selected set of surface molecules on T or B cells. J. Immunol. 178, 3637–3647 (2007).

CAS  PubMed  Google Scholar 

Alter, G., Malenfant, J. M. & Altfeld, M. CD107a as a functional marker for the identification of natural killer cell activity. J. Immunol. Methods 294, 15–22 (2004).

CAS  PubMed  Google Scholar 

Poorebrahim, M. et al. Counteracting CAR T cell dysfunction. Oncogene 40, 421–435 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Judge, S. J., Murphy, W. J. & Canter, R. J. Characterizing the dysfunctional NK cell: assessing the clinical relevance of exhaustion, anergy, and senescence. Front. Cell. Infect. Microbiol. 10, 49 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Good, C. R. et al. An NK-like CAR T cell transition in CAR T cell dysfunction. Cell 184, 6081–6100.e26 (2021).

CAS  PubMed  Google Scholar 

Pesce, S. et al. Identification of a subset of human natural killer cells expressing high levels of programmed death 1: a phenotypic and functional characterization. J. Allergy Clin. Immunol. 139, 335–346 e333 (2017).

CAS  PubMed  Google Scholar 

Anderson, A. C., Joller, N. & Kuchroo, V. K. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity 44, 989–1004 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Gill, S. et al. Rapid development of exhaustion and down-regulation of eomesodermin limit the antitumor activity of adoptively transferred murine natural killer cells. Blood 119, 5758–5768 (2012).

CAS  PubMed  PubMed Central  Google Scholar 

Myers, J. A. et al. Balanced engagement of activating and inhibitory receptors mitigates human NK cell exhaustion. JCI Insight 7, e150079 (2022).

PubMed  PubMed Central  Google Scholar 

Simonetta, F., Pradier, A. & Roosnek, E. T-bet and eomesodermin in NK cell development, maturation, and function. Front. Immunol. 7, 241 (2016).

PubMed  PubMed Central  Google Scholar 

Gardiner, C. M. & Finlay, D. K. What fuels natural killers? Metabolism and NK cell responses. Front. Immunol. 8, 367 (2017).

PubMed  PubMed Central  Google Scholar 

O’Brien, K. L. & Finlay, D. K. Immunometabolism and natural killer cell responses. Nat. Rev. Immunol. 19, 282–290 (2019).

PubMed  Google Scholar 

Liu, E. et al. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia 32, 520–531 (2018).

CAS  PubMed  Google Scholar 

Daher, M. et al. Targeting a cytokine checkpoint enhances the fitness of armored cord blood CAR-NK cells. Blood 137, 624–636 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Li, L. et al. A novel immature natural killer cell subpopulation predicts relapse after cord blood transplantation. Blood Adv. 3, 4117–4130 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Merino, A. et al. Chronic stimulation drives human NK cell dysfunction and epigenetic reprograming. J. Clin. Invest. 129, 3770–3785 (2019).

PubMed  PubMed Central  Google Scholar 

Van Gassen, S. et al. FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A 87, 636–645 (2015).

PubMed  Google Scholar 

Liu, E. et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N. Engl. J. Med. 382, 545–553 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Vivier, E., Nunes, J. A. & Vely, F. Natural killer cell signaling pathways. Science 306, 1517–1519 (2004).

CAS  PubMed  Google Scholar 

Kirwan, S. E. & Burshtyn, D. N. Killer cell Ig-like receptor-dependent signaling by Ig-like transcript 2 (ILT2/CD85j/LILRB1/LIR-1). J. Immunol. 175, 5006–5015 (2005).

CAS  PubMed  Google Scholar 

Zenarruzabeitia, O., Vitalle, J., Eguizabal, C., Simhadri, V. R. & Borrego, F. The biology and disease relevance of CD300a, an inhibitory receptor for phosphatidylserine and phosphatidylethanolamine. J. Immunol. 194, 5053–5060 (2015).

CAS  PubMed 

留言 (0)

沒有登入
gif