The three-dimensional landscape of cortical chromatin accessibility in Alzheimer’s disease

Andrews, S. J., Fulton-Howard, B. & Goate, A. Interpretation of risk loci from genome-wide association studies of Alzheimer’s disease. Lancet Neurol. 19, 326–335 (2020).

PubMed  PubMed Central  Article  Google Scholar 

Marzi, S. J. et al. A histone acetylome-wide association study of Alzheimer’s disease identifies disease-associated H3K27ac differences in the entorhinal cortex. Nat. Neurosci. 21, 1618–1627 (2018).

CAS  PubMed  Article  Google Scholar 

Klein, H.-U. et al. Epigenome-wide study uncovers large-scale changes in histone acetylation driven by tau pathology in aging and Alzheimer’s human brains. Nat. Neurosci. 22, 37–46 (2019).

CAS  PubMed  Article  Google Scholar 

Gasparoni, G. et al. DNA methylation analysis on purified neurons and glia dissects age and Alzheimer’s disease-specific changes in the human cortex. Epigenet. Chromatin 11, 41 (2018).

Article  Google Scholar 

Li, P. et al. Epigenetic dysregulation of enhancers in neurons is associated with Alzheimer’s disease pathology and cognitive symptoms. Nat. Commun. 10, 2246 (2019).

PubMed  PubMed Central  Article  Google Scholar 

Raj, T. et al. Integrative transcriptome analyses of the aging brain implicate altered splicing in Alzheimer’s disease susceptibility. Nat. Genet. 50, 1584–1592 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Nott, A. et al. Brain cell type-specific enhancer–promoter interactome maps and disease-risk association. Science 366, 1134–1139 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kozlenkov, A. et al. Substantial DNA methylation differences between two major neuronal subtypes in human brain. Nucleic Acids Res. 44, 2593–2612 (2016).

PubMed  Article  Google Scholar 

Wang, M. et al. The Mount Sinai cohort of large-scale genomic, transcriptomic and proteomic data in Alzheimer’s disease. Sci. Data 5, 180185 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Fillenbaum, G. G. et al. Consortium to Establish a Registry for Alzheimer’s Disease (CERAD): the first twenty years. Alzheimers Dement. 4, 96–109 (2008).

PubMed  PubMed Central  Article  Google Scholar 

Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

CAS  PubMed  Article  Google Scholar 

Braak, H., Alafuzoff, I., Arzberger, T., Kretzschmar, H. & Del Tredici, K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 112, 389–404 (2006).

PubMed  PubMed Central  Article  Google Scholar 

Morris, J. C. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 43, 2412–2414 (1993).

CAS  PubMed  Article  Google Scholar 

Nelson, P. T. et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J. Neuropathol. Exp. Neurol. 71, 362–381 (2012).

PubMed  Article  Google Scholar 

Fullard, J. F. et al. An atlas of chromatin accessibility in the adult human brain. Genome Res. 28, 1243–1252 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hauberg, M. E. et al. Common schizophrenia risk variants are enriched in open chromatin regions of human glutamatergic neurons. Nat. Commun. 11, 5581 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hu, B. et al. Neuronal and glial 3D chromatin architecture informs the cellular etiology of brain disorders. Nat. Commun. 12, 3968 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hoffman, G. E. & Schadt, E. E. variancePartition: interpreting drivers of variation in complex gene expression studies. BMC Bioinformatics 17, 483 (2016).

PubMed  PubMed Central  Article  Google Scholar 

Fulco, C. P. et al. Activity-by-contact model of enhancer–promoter regulation from thousands of CRISPR perturbations. Nat. Genet. 51, 1664–1669 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mifsud, B. et al. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat. Genet. 47, 598–606 (2015).

CAS  PubMed  Article  Google Scholar 

Corces, M. R. et al. Single-cell epigenomic analyses implicate candidate causal variants at inherited risk loci for Alzheimer’s and Parkinson’s diseases. Nat. Genet. 52, 1158–1168 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hormozdiari, F. et al. Leveraging molecular quantitative trait loci to understand the genetic architecture of diseases and complex traits. Nat. Genet. 50, 1041–1047 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Pickar-Oliver, A. & Gersbach, C. A. The next generation of CRISPR–Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 20, 490–507 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wang, M. et al. Integrative network analysis of nineteen brain regions identifies molecular signatures and networks underlying selective regional vulnerability to Alzheimer’s disease. Genome Med. 8, 104 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Khan, U. A. et al. Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer’s disease. Nat. Neurosci. 17, 304–311 (2014).

CAS  PubMed  Article  Google Scholar 

Barrera, J. et al. Sex dependent glial-specific changes in the chromatin accessibility landscape in late-onset Alzheimer’s disease brains. Mol. Neurodegener. 16, 58 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bowles, K. et al. 17q21.31 sub-haplotypes underlying H1-associated risk for Parkinson’s disease are associated with LRRC37A/2 expression in astrocytes. Mol. Neurodegener. 16, 1–21 (2022).

Google Scholar 

Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 51, 404–413 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kunkle, B. W. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 51, 414–430 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Yokoyama, K. et al. NYAP: a phosphoprotein family that links PI3K to WAVE1 signalling in neurons. EMBO J. 30, 4739–4754 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chen, X. et al. Cholecystokinin release triggered by NMDA receptors produces LTP and sound–sound associative memory. Proc. Natl. Acad. Sci. U.S.A. 116, 6397–6406 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Li, X., Long, J., He, T., Belshaw, R. & Scott, J. Integrated genomic approaches identify major pathways and upstream regulators in late onset Alzheimer’s disease. Sci. Rep. 5, 12393 (2015).

PubMed  PubMed Central  Article  Google Scholar 

Castillo, E. et al. Comparative profiling of cortical gene expression in Alzheimer’s disease patients and mouse models demonstrates a link between amyloidosis and neuroinflammation. Sci. Rep. 7, 17762 (2017).

PubMed  PubMed Central  Article  Google Scholar 

Hokama, M. et al. Altered expression of diabetes-related genes in Alzheimer’s disease brains: the Hisayama study. Cereb. Cortex 24, 2476–2488 (2014).

PubMed  Article  Google Scholar 

Chan, P. M. & Manser, E. PAKs in human disease. Prog. Mol. Biol. Transl. Sci. 106, 171–187 (2012).

CAS  PubMed  Article  Google Scholar 

Bell, R. D. & Zlokovic, B. V. Neurovascular mechanisms and blood–brain barrier disorder in Alzheimer’s disease. Acta Neuropathol. 118, 103–113 (2009).

CAS  PubMed  PubMed Central  Article 

留言 (0)

沒有登入
gif