FUT6 inhibits the proliferation, migration, invasion, and EGF-induced EMT of head and neck squamous cell carcinoma (HNSCC) by regulating EGFR/ERK/STAT signaling pathway

Leemans C, Braakhuis B, Brakenhoff R. The molecular biology of head and neck cancer. Nat Rev Cancer. 2011;11:9–22.

CAS  PubMed  Google Scholar 

Siegel R, Miller K, Fuchs H, Jemal A. Cancer Statistics, 2021. CA: Cancer J Clin 2021;71:7–33.

Google Scholar 

Marur S, Forastiere A. Head and neck squamous cell carcinoma: update on epidemiology, diagnosis, and treatment. Mayo Clin Proc. 2016;91:386–96.

PubMed  Google Scholar 

Ausoni S, Boscolo-Rizzo P, Singh B, Da Mosto M, Spinato G, Tirelli G, et al. Targeting cellular and molecular drivers of head and neck squamous cell carcinoma: current options and emerging perspectives. Cancer Metastasis Rev. 2016;35:413–26.

CAS  PubMed  PubMed Central  Google Scholar 

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.

CAS  PubMed  Google Scholar 

Liu H, Ma L, Cao B, Lin J, Han L, Li C, et al. Progress in research into the role of abnormal glycosylation modification in tumor immunity. Immunol Lett. 2021;229:8–17.

CAS  PubMed  Google Scholar 

Liu Y, Yen H, Chen C, Chen C, Cheng P, Juan Y, et al. Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. Proc Natl Acad Sci USA. 2011;108:11332–7.

CAS  PubMed  PubMed Central  Google Scholar 

Liu H, Ma L, Lin J, Cao B, Qu D, Luo C, et al. Advances in molecular mechanisms of drugs affecting abnormal glycosylation and metastasis of breast cancer. Pharmacol Res. 2020;155:104738.

CAS  PubMed  Google Scholar 

Tan F, Tang C, Exley R. Sugar coating: bacterial protein glycosylation and host-microbe interactions. Trends Biochemical Sci. 2015;40:342–50.

CAS  Google Scholar 

Mereiter S, Balmaña M, Campos D, Gomes J, Reis C. Glycosylation in the era of cancer-targeted therapy: where are we heading? Cancer Cell. 2019;36:6–16.

CAS  PubMed  Google Scholar 

Mizuochi T, Taniguchi T, Shimizu A, Kobata A. Structural and numerical variations of the carbohydrate moiety of immunoglobulin G. J Immunol. 1982;129:2016–20.

CAS  PubMed  Google Scholar 

Rademacher TW, Parekh RB, Dwek RA. Glycobiology. Annu Rev Biochem. 1988;57:785–838.

CAS  PubMed  Google Scholar 

Liang L, Gao C, Li Y, Sun M, Xu J, Li H, et al. miR-125a-3p/FUT5-FUT6 axis mediates colorectal cancer cell proliferation, migration, invasion and pathological angiogenesis via PI3K-Akt pathway. Cell Death Dis. 2017;8:e2968.

CAS  PubMed  PubMed Central  Google Scholar 

Muinelo-Romay L, Vázquez-Martín C, Villar-Portela S, Cuevas E, Gil-Martín E, Fernández-Briera A. Expression and enzyme activity of alpha(1,6)fucosyltransferase in human colorectal cancer. Int J Cancer. 2008;123:641–6.

CAS  PubMed  Google Scholar 

Pan S, Liu Y, Liu Q, Xiao Y, Liu B, Ren X, et al. HOTAIR/miR-326/FUT6 axis facilitates colorectal cancer progression through regulating fucosylation of CD44 via PI3K/AKT/mTOR pathway. Biochimica Et Biophysica Acta Mol Cell Res. 2019;1866:750–60.

CAS  Google Scholar 

Li N, Liu Y, Miao Y, Zhao L, Zhou H, Jia L. MicroRNA-106b targets FUT6 to promote cell migration, invasion, and proliferation in human breast cancer. IUBMB Life. 2016;68:764–75.

CAS  PubMed  Google Scholar 

Yan X, Lin Y, Liu S, Aziz F, Yan Q. Fucosyltransferase IV (FUT4) as an effective biomarker for the diagnosis of breast cancer. Biomed Pharmacother. 2015;70:299–304.

CAS  PubMed  Google Scholar 

de Albuquerque Vasconcelos J, de Almeida Ferreira S, de Lima A, de Melo Rêgo M, Bandeira A, de Lima Bezerra Cavalcanti C, et al. Comparing the immunoexpression of FUT3 and FUT6 between prostatic adenocarcinoma and benign prostatic hyperplasia. Acta Histochemica Et Cytochemica. 2013;46:105–9.

PubMed  PubMed Central  Google Scholar 

Ito Y, Miyauchi A, Yoshida H, Uruno T, Nakano K, Takamura Y, et al. Expression of alpha1,6-fucosyltransferase (FUT8) in papillary carcinoma of the thyroid: its linkage to biological aggressiveness and anaplastic transformation. Cancer Lett. 2003;200:167–72.

CAS  PubMed  Google Scholar 

Escrevente C, Machado E, Brito C, Reis C, Stoeck A, Runz S, et al. Different expression levels of alpha3/4 fucosyltransferases and Lewis determinants in ovarian carcinoma tissues and cell lines. Int J Oncol. 2006;29:557–66.

CAS  PubMed  Google Scholar 

Guo Q, Guo B, Wang Y, Wu J, Jiang W, Zhao S, et al. Functional analysis of α1,3/4-fucosyltransferase VI in human hepatocellular carcinoma cells. Biochem. Biophys. Res Commun. 2012;417:311–7.

CAS  PubMed  Google Scholar 

Chandler K, Alamoud K, Stahl V, Nguyen B, Kartha V, Bais M, et al. β-Catenin/CBP inhibition alters epidermal growth factor receptor fucosylation status in oral squamous cell carcinoma. Mol Omics. 2020;16:195–209.

CAS  PubMed  PubMed Central  Google Scholar 

Chen Y, Chong Y, Cheng C, Ho C, Tsai H, Kasten F, et al. Identification of novel tumor markers for oral squamous cell carcinoma using glycoproteomic analysis. Clin Chim Acta 2013;420:45–53.

CAS  PubMed  Google Scholar 

Shen L, Xia M, Deng X, Ke Q, Zhang C, Peng F, et al. A lectin-based glycomic approach identifies FUT8 as a driver of radioresistance in oesophageal squamous cell carcinoma. Cell Oncol. 2020;43:695–707.

CAS  Google Scholar 

Reguigne-Arnould I, Couillin P, Mollicone R, Fauré S, Fletcher A, Kelly R, et al. Relative positions of two clusters of human alpha-L-fucosyltransferases in 19q (FUT1-FUT2) and 19p (FUT6-FUT3-FUT5) within the microsatellite genetic map of chromosome 19. Cytogenetics Cell Genet. 1995;71:158–62.

CAS  Google Scholar 

Nieto M, Huang R, Jackson R, Thiery J. EMT: 2016. Cell. 2016;166:21–45.

CAS  PubMed  Google Scholar 

Choudhary K, Rohatgi N, Halldorsson S, Briem E, Gudjonsson T, Gudmundsson S, et al. EGFR signal-network reconstruction demonstrates metabolic crosstalk in EMT. PLoS Computational Biol. 2016;12:e1004924.

Google Scholar 

Kalluri R, Weinberg R. The basics of epithelial-mesenchymal transition. J Clin Investig. 2009;119:1420–8.

CAS  PubMed  PubMed Central  Google Scholar 

Olmeda D, Jordá M, Peinado H, Fabra A, Cano A. Snail silencing effectively suppresses tumour growth and invasiveness. Oncogene 2007;26:1862–74.

CAS  PubMed  Google Scholar 

Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7:415–28.

CAS  PubMed  Google Scholar 

Elloul S, Elstrand M, Nesland J, Tropé C, Kvalheim G, Goldberg I, et al. Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer. 2005;103:1631–43.

CAS  PubMed  Google Scholar 

Kang Y, Massagué J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell. 2004;118:277–9.

CAS  PubMed  Google Scholar 

Sommariva M, Gagliano N. E-Cadherin in pancreatic ductal adenocarcinoma: a multifaceted actor during EMT. Cells. 2020;9:1040.

PubMed Central  Google Scholar 

Zhao Y, Cai C, Zhang M, Shi L, Wang J, Zhang H, et al. Ephrin-A2 promotes prostate cancer metastasis by enhancing angiogenesis and promoting EMT. J Cancer Res Clin Oncol. 2021;147:2013–23.

CAS  PubMed  Google Scholar 

Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.

CAS  PubMed  PubMed Central  Google Scholar 

Sheng W, Shi X, Lin Y, Tang J, Jia C, Cao R, et al. Musashi2 promotes EGF-induced EMT in pancreatic cancer via ZEB1-ERK/MAPK signaling. J Exp Clin Cancer Res. 2020;39:16.

CAS  PubMed  PubMed Central  Google Scholar 

Sun J, Chen L, Dong M. MiR-338-5p inhibits EGF-induced EMT in pancreatic cancer cells by targeting EGFR/ERK signaling. Front Oncol. 2021;11:616481.

PubMed  PubMed Central  Google Scholar 

Zhang Z, Dong Z, Lauxen I, Filho M, Nör J. Endothelial cell-secreted EGF induces epithelial to mesenchymal transition and endows head and neck cancer cells with stem-like phenotype. Cancer Res. 2014;74:2869–81.

CAS  PubMed  PubMed Central  Google Scholar 

Livak K, Schmittgen T. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25:402–8.

CAS  PubMed  Google Scholar 

Kalyankrishna S, Grandis J. Epidermal growth factor receptor biology in head and neck cancer. J Clin Oncol. 2006;24:2666–72.

CAS  PubMed  Google Scholar 

Roepstorff K, Grandal M, Henriksen L, Knudsen S, Lerdrup M, Grøvdal L, et al. Differential effects of EGFR ligands on endocytic sorting of the receptor. Traffic 2009;10:1115–27.

CAS  PubMed  PubMed Central  Google Scholar 

Yarden Y, Shilo B. SnapShot: EGFR signaling pathway. Cell. 2007;131:1018.

PubMed  Google Scholar 

Luo W, Chen J, Li L, Ren X, Cheng T, Lu S, et al. c-Myc inhibits myoblast differentiation and promotes myoblast proliferation and muscle fibre hypertrophy by regulating the expression of its target genes, miRNAs and lincRNAs. Cell Death Differ. 2019;26:426–42.

CAS  PubMed  Google Scholar 

Kuo H, Hsu H, Chen Y, Chang Y, Liu F, Wu C. Galectin-3 modulates the EGFR signalling-mediated regulation of Sox2 expression via c-Myc in lung cancer. Glycobiology. 2016;26:155–65.

CAS  PubMed 

留言 (0)

沒有登入
gif