Curcumin and capsaicin regulate apoptosis and alleviate intestinal inflammation induced by Clostridioides difficile in vitro

Martin JS, Monaghan TM, Wilcox MH. Clostridium difficile infection: epidemiology, diagnosis and understanding transmission. Nat Rev Gastroenterol Hepatol. 2016;13(4):206–16.

PubMed  Article  Google Scholar 

Freeman J, et al. The changing epidemiology of Clostridium difficile infections. Clin Microbiol Rev. 2010;23(3):529–49.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Dingle KE, et al. Clinical Clostridium difficile: clonality and pathogenicity locus diversity. PLoS ONE. 2011;6(5): e19993.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rupnik M, Wilcox MH, Gerding DN. Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol. 2009;7(7):526–36.

CAS  PubMed  Article  Google Scholar 

Crobach MJ, et al. Understanding Clostridium difficile colonization. Clin Microbiol Rev. 2018;31(2):e00021-e117.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Jank T, Belyi Y, Aktories K. Bacterial glycosyltransferase toxins. Cell Microbiol. 2015;17(12):1752–65.

CAS  PubMed  Article  Google Scholar 

Di Bella S, et al. Clostridium difficile toxins A and B: insights into pathogenic properties and extraintestinal effects. Toxins. 2016;8(5):134.

PubMed Central  Article  Google Scholar 

Saavedra PH, et al. Apoptosis of intestinal epithelial cells restricts Clostridium difficile infection in a model of Pseudomembranous colitis. Nat Commun. 2018;9(1):1–10.

CAS  Article  Google Scholar 

Gerhard R, et al. Glucosylation of Rho GTPases by Clostridium difficile toxin A triggers apoptosis in intestinal epithelial cells. J Med Microbiol. 2008;57(6):765–70.

CAS  PubMed  Article  Google Scholar 

Chandrasekaran R, Lacy DB. The role of toxins in Clostridium difficile infection. FEMS Microbiol Rev. 2017;41(6):723–50.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Matte I, et al. Antiapoptotic proteins Bcl-2 and Bcl-XL inhibit Clostridium difficile toxin A-induced cell death in human epithelial cells. Infect Immun. 2009;77(12):5400–10.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Nottrott S, et al. Clostridium difficile toxin A-induced apoptosis is p53-independent but depends on glucosylation of Rho GTPases. Apoptosis. 2007;12(8):1443–53.

CAS  PubMed  Article  Google Scholar 

Matarrese P, et al. Clostridium difficile toxin B causes apoptosis in epithelial cells by thrilling mitochondria: involvement of ATP-sensitive mitochondrial potassium channels. J Biol Chem. 2007;282(12):9029–41.

CAS  PubMed  Article  Google Scholar 

Miller BA, et al. Comparison of the burdens of hospital-onset, healthcare facility-associated Clostridium difficile infection and of healthcare-associated infection due to methicillin-resistant staphylococcus aureus in community hospitals. Infect Control Hosp Epidemiol. 2011;32(4):387–90.

PubMed  Article  Google Scholar 

Ooijevaar RE, et al. Update of treatment algorithms for Clostridium difficile infection. Clin Microbiol Infect. 2018;24(5):452–62.

CAS  PubMed  Article  Google Scholar 

Østensen M. The use of biologics in pregnant patients with rheumatic disease. Expert Rev Clin Pharmacol. 2017;10(6):661–9.

PubMed  Article  Google Scholar 

Martin J, Wilcox M. New and emerging therapies for Clostridium difficile infection. Curr Opin Infect Dis. 2016;29(6):546–54.

CAS  PubMed  Article  Google Scholar 

Wilcox MH, et al. Impact of recurrent Clostridium difficile infection: hospitalization and patient quality of life. J Antimicrob Chemother. 2017;72(9):2647–56.

CAS  PubMed  Article  Google Scholar 

Nelson RL, Suda KJ, Evans CT. Antibiotic treatment for Clostridium difficile associated diarrhoea in adults. Cochrane Database Syst Rev. 2017. https://doi.org/10.1002/14651858.CD004610.pub5.

Article  PubMed  PubMed Central  Google Scholar 

Burton HE, Mitchell SA, Watt M. A systematic literature review of economic evaluations of antibiotic treatments for Clostridium difficile Infection. Pharmacoeconomics. 2017;35(11):1123–40.

PubMed  PubMed Central  Article  Google Scholar 

Spigaglia P. Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection. Ther Adv Infect Dis. 2016;3(1):23–42.

CAS  PubMed  PubMed Central  Google Scholar 

O’Neill J, et al. Unravelling the mystery of capsaicin: a tool to understand and treat pain. Pharmacol Rev. 2012;64(4):939–71.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Jung MY, Kang HJ, Moon A. Capsaicin-induced apoptosis in SK-Hep-1 hepatocarcinoma cells involves Bcl-2 downregulation and caspase-3 activation. Cancer Lett. 2001;165(2):139–45.

CAS  PubMed  Article  Google Scholar 

Fürst R, Zündorf I. Plant-derived anti-inflammatory compounds: hopes and disappointments regarding the translation of preclinical knowledge into clinical progress. Mediators Inflamm. 2014;2014: 146832.

PubMed  PubMed Central  Article  Google Scholar 

Forni C, et al. Beneficial role of phytochemicals on oxidative stress and age-related diseases. Biomed Res Int. 2019;2019:8748253.

PubMed  PubMed Central  Article  Google Scholar 

Abdul Manap AS, et al. Synergistic effects of curcumin and piperine as potent acetylcholine and amyloidogenic inhibitors with significant neuroprotective activity in sh-sy5y cells via computational molecular modeling and in vitro assay. Front Aging Neurosci. 2019;11:206.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Upadhyay A, et al. Inhibiting microbial toxins using plant-derived compounds and plant extracts. Medicines (Basel). 2015;2(3):186–211.

CAS  Article  Google Scholar 

Friedman M, Rasooly R. Review of the inhibition of biological activities of food-related selected toxins by natural compounds. Toxins (Basel). 2013;5(4):743–75.

CAS  Article  Google Scholar 

Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol. 2008;75(4):787–809.

CAS  PubMed  Article  Google Scholar 

Sharma SK, Vij AS, Sharma M. Mechanisms and clinical uses of capsaicin. Eur J Pharmacol. 2013;720(1–3):55–62.

CAS  PubMed  Article  Google Scholar 

Beevers CS, Huang S. Pharmacological and clinical properties of curcumin botanics. Target Ther. 2011;1:5.

Google Scholar 

Patel SS, et al. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit Rev Food Sci Nutr. 2020;60(6):887–939.

CAS  PubMed  Article  Google Scholar 

Moghadamtousi SZ, et al. A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Res Int. 2014;2014: 186864.

PubMed  Google Scholar 

Karimi N, et al. Antioxidant, antimicrobial and physicochemical properties of turmeric extract-loaded nanostructured lipid carrier (NLC). Colloid Interface Sci Commun. 2018;22:18–24.

CAS  Article  Google Scholar 

Hussain Y, et al. Antimicrobial potential of curcumin: therapeutic potential and challenges to clinical applications. Antibiotics. 2022;11(3):322.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Betts JW, et al. In vitro antibacterial activity of curcumin-polymyxin b combinations against multidrug-resistant bacteria associated with traumatic wound infections. J Nat Prod. 2016;79(6):1702–6.

CAS  PubMed  Article  Google Scholar 

Yang F, Zheng J. Understand spiciness: mechanism of TRPV1 channel activation by capsaicin. Protein Cell. 2017;8(3):169–77.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hayman M, Kam PC. Capsaicin: a review of its pharmacology and clinical applications. Curr Anaesth Crit Care. 2008;19(5–6):338–43.

Article  Google Scholar 

Nascimento PL, et al. Quantification, antioxidant and antimicrobial activity of phenolics isolated from different extracts of Capsicum frutescens (Pimenta Malagueta). Molecules. 2014;19(4):5434–47.

PubMed  PubMed Central  Article  Google Scholar 

Azimirad M, et al. Coexistence of Clostridioides difficile and Staphylococcus aureus in gut of Iranian outpatients with underlying inflammatory bowel disease. Anaerobe. 2020;61: 102113.

CAS  PubMed  Article 

留言 (0)

沒有登入
gif