Recent studies of the molecular mechanism of lusitropy due to phosphorylation of cardiac troponin I by protein kinase A

Baryshnikova OK, Li MX, Sykes BD (2008) Modulation of cardiac troponin C function by the cardiac-specific N-terminus of troponin I: influence of PKA phosphorylation and involvement in cardiomyopathies. J Mol Biol 375(3):735–751. https://doi.org/10.1016/j.jmb.2007.10.062

CAS  Article  PubMed  Google Scholar 

Biesiadecki BJ, Kobayashi T, Walker JS, John Solaro R, de Tombe PP (2007) The troponin C G159D mutation blunts myofilament desensitization induced by troponin I Ser23/24 phosphorylation. Circ Res 100(10):1486–1493   https://doi.org/10.1161/01.RES.0000267744.92677.7f

CAS  Article  Google Scholar 

Cheng Y, Lindert S, Kekenes-Huskey P, Rao VS, Solaro RJ, Rosevear PR et al (2014) Computational studies of the effect of the S23D/S24D troponin I mutation on cardiac troponin structural dynamics. Biophys J 107(7):1675–1685. https://doi.org/10.1016/j.bpj.2014.08.008

CAS  Article  PubMed  PubMed Central  Google Scholar 

Dyer E, Jacques A, Hoskins A, Ward D, Gallon C, Messer A et al (2009) Functional analysis of a unique troponin C mutation, Gly159Asp that causes familial dilated cardiomyopathy, studied in explanted heart muscle. Circ Heart Fail 2:456–464. https://doi.org/10.1161/CIRCHEARTFAILURE.108.818237

CAS  Article  PubMed  Google Scholar 

Howarth JW, Meller J, Solaro RJ, Trewhella J, Rosevear PR (2007) Phosphorylation-dependent conformational transition of the cardiac specific N-extension of troponin I in cardiac troponin. J Mol Biol 373(3):706–722. https://doi.org/10.1016/j.jmb.2007.08.035

CAS  Article  PubMed  Google Scholar 

Hwang PM, Cai F, Pineda-Sanabria SE, Corson DC, Sykes BD (2014) The cardiac-specific N-terminal region of troponin I positions the regulatory domain of troponin C. Proc Natl Acad Sci U S A 111(40):14412–14417. https://doi.org/10.1073/pnas.1410775111

CAS  Article  PubMed  PubMed Central  Google Scholar 

Jubb HC, Higueruelo AP, Ochoa-Montaño B, Pitt WR, Ascher DB, Blundell TL (2017) Arpeggio: a web server for calculating and visualising interatomic interactions in protein structures. J Mol Biol 429(3):365–371. https://doi.org/10.1016/j.jmb.2016.12.004PMID-27964945

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kachooei E, Cordina NM, Potluri PR, Guse JA, McCamey D, Brown LJ (2021) Phosphorylation of Troponin I finely controls the positioning of troponin for the optimal regulation of cardiac muscle contraction. J Mol Cell Cardiol 150:44–53. https://doi.org/10.1016/j.yjmcc.2020.10.007

CAS  Article  PubMed  Google Scholar 

Kowlessur D, Tobacman LS (2012) Significance of troponin dynamics for Ca2+-mediated regulation of contraction and inherited cardiomyopathy. J Biol Chem 287(50):42299–42311. https://doi.org/10.1074/jbc.M112.423459

CAS  Article  PubMed  PubMed Central  Google Scholar 

Křen V, Valentová K (2022) Silybin and its congeners: from traditional medicine to molecular effects. Nat Prod Rep. https://doi.org/10.1039/d2np00013jPMID-35510639

Article  PubMed  Google Scholar 

Layland J, Solaro RJ, Shah AM (2005) Regulation of cardiac contractile function by troponin I phosphorylation. Cardiovasc Res 66(1):12–21   https://doi.org/10.1113/jphysiol.2004.061176

CAS  Article  Google Scholar 

Li MX, Spyracopoulos L, Sykes BD (1999) Binding of cardiac troponin-I147-163 induces a structural opening in human cardiac troponin-C. Biochemistry 38(26):8289–8298  https://doi.org/10.1021/bi9901679

CAS  Article  Google Scholar 

Little SC, Biesiadecki BJ, Kilic A, Higgins RSD, Janssen PML, Davis JP (2012) The rates of Ca2+ dissociation and cross-bridge detachment from ventricular myofibrils as reported by a fluorescent cardiac troponin C. J Biol Chem 287:27930–27940. https://doi.org/10.1074/jbc.M111.337295

CAS  Article  PubMed  PubMed Central  Google Scholar 

Mahmud Z, Dhami PS, Rans C, Liu PB, Hwang PM (2021) Dilated cardiomyopathy mutations and phosphorylation disrupt the active orientation of cardiac troponin C. J Mol Biol 433(13):167010. https://doi.org/10.1016/j.jmb.2021.167010PMID-33901537

CAS  Article  PubMed  Google Scholar 

Matsuo T, Takeda S, Oda T, Fujiwara S (2015) Structures of the troponin core domain containing the cardiomyopathy-causing mutants studied by small-angle X-ray scattering. Biophys Physicobiol 12:145–158. https://doi.org/10.2142/biophysico.12.0_145

CAS  Article  PubMed  PubMed Central  Google Scholar 

Marston S (2016) Why is there a limit to the changes in myofilament Ca2+-sensitivity associated with myopathy causing mutations? Front Physiol. https://doi.org/10.3389/fphys.2016.00415

Article  PubMed  PubMed Central  Google Scholar 

Messer A, Marston S (2014) Investigating the role of uncoupling of Troponin I phosphorylation from changes in myofibrillar Ca2+-sensitivity in the pathogenesis of cardiomyopathy. Front Physiol 5:315. https://doi.org/10.3389/fphys.2014.00315

Article  PubMed  PubMed Central  Google Scholar 

Mou Q, Jia Z, Luo M, Liu L, Huang X, Quan J et al (2022) Epigallocatechin-3-gallate exerts cardioprotective effects related to energy metabolism in pressure overload-induced cardiac dysfunction. Arch Biochem Biophys 723:109217. https://doi.org/10.1016/j.abb.2022.109217PMID-35427576

CAS  Article  PubMed  Google Scholar 

Papadaki M, Marston SB (2016) The importance of intrinsically disordered segments of cardiac troponin in modulating function by phosphorylation and disease-causing mutations. Front Physiol 7:735. https://doi.org/10.3389/fphys.2016.00508

Article  Google Scholar 

Parry DAD, Squire JM (1973) Structural role of tropomyosin in muscle regulation: analysis of the X-ray patterns from relaxed and contracting muscles. J Mol Biol 75:33–55   https://doi.org/10.1016/0022-2836(73)90527-5

CAS  Article  Google Scholar 

Paul DM, Morris EP, Kensler RW, Squire JM (2009) Structure and orientation of troponin in the thin filament. J Biol Chem 284(22):15007–15015. https://doi.org/10.1074/jbc.M808615200

CAS  Article  PubMed  PubMed Central  Google Scholar 

Pavadai E, Rynkiewicz MJ, Yang Z, Gould IR, Marston SB, Lehman W (2022) Modulation of cardiac thin filament structure by phosphorylated troponin-I analyzed by protein-protein docking and molecular dynamics simulation. Arch Biochem Biophys. https://doi.org/10.1016/j.abb.2022.109282PMID-35577070

Article  PubMed  Google Scholar 

Pi Y-Q, Kemnitz KR, Zhang D, Kranias EG, Walker JW (2002) Phosphorylation of troponin I controls cardiac twitch dynamics. Evidence from phosphorylation site mutants expressed on a troponin I-null background in mice. Circ Res 90:649–656.   https://doi.org/10.1161/01.res.0000014080.82861.5f

CAS  Article  Google Scholar 

Rasmussen M, Feng H-Z, Jin JP (2022) Evolution of the N-terminal regulation of cardiac troponin i for heart function of tetrapods: lungfish presents an example of the emergence of novel submolecular structure to lead the capacity of adaptation. J Mol Evol 90(1):30–43. https://doi.org/10.1007/s00239-021-10039-9PMID-34966949

CAS  Article  PubMed  Google Scholar 

Ray KP, England PJ (1976) Phosphorylation of the inhibitory subunit of troponin and its effect on the calcium dependence of cardiac myofibril adenosine triphosphatase. FEBS Lett 70(1):11–16

CAS  Article  Google Scholar 

Risi CM, Pepper I, Belknap B, Landim-Vieira M, White HD, Dryden K et al (2021) The structure of the native cardiac thin filament at systolic Ca2+ levels. Proc Natl Acad Sci US Am. https://doi.org/10.1073/pnas.2024288118

Article  Google Scholar 

Sheehan, A.M. (2019). PhD Thesis “Modulation of cardiac muscle contractility by phosphorylation, HCM and DCM causing mutations and small molecules.” Imperial College London

Sheehan A, Messer AE, Papadaki M, Choudhry A, Kren V, Biedermann D et al (2018) Molecular defects in cardiac myofilament Ca2+-regulation due to cardiomyopathy-linked mutations can be reversed by small molecules binding to troponin. Front Physiol. https://doi.org/10.3389/fphys.2018.00243

Article  PubMed  PubMed Central  Google Scholar 

Solaro RJ, Moir AGJ, Perry SV (1976) Phosphorylation of troponin I and the inotropic effect of adrenaline in the perfused rabbit heart. Nature 262:615–616. https://doi.org/10.1038/262615a0

Song W, Dyer E, Stuckey D, Copeland O, Leung M, Bayliss C et al (2011) Molecular mechanism of the Glu99lys mutation in cardiac actin (ACTC gene) that causes apical hypertrophy in man and mouse. J Biol Chem 286(31):27582–27593. https://doi.org/10.1074/jbc.M111.252320

CAS  Article  PubMed  PubMed Central  Google Scholar 

Squire JM, Morris EP (1998) A new look at thin filament regulation in vertebrate skeletal muscle. FASEB J 12:761–771. https://doi.org/10.1096/fasebj.12.10.761

CAS  Article  Google Scholar 

Takeda N, Yamashita A, Maeda K, Maeda Y (2003) Structure of the core domain of human cardiac troponin in the Ca2+-saturated form. Nature 424:35–41. https://doi.org/10.1038/nature01780

CAS  Article  Google Scholar 

Vinogradova MV, Stone DB, Malanina GG, Karatzaferi C, Cooke R, Mendelson RA et al (2005) Ca2+-regulated structural changes in troponin. Proc Natl Acad Sci U S A 102(14):5038–5045. https://doi.org/10.1073/pnas.0408882102

CAS  Article  Google Scholar 

Wilkinson R, Song W, Smoktunowicz N, Marston S (2015) A dilated cardiomyopathy mutation blunts adrenergic response and induces contractile dysfunction under chronic angiotensin II stress. Am J Physiol Heart Circ Physiol 309(11):H1936–H1946. https://doi.org/10.1152/ajpheart.00327.2015

CAS  Article  Google Scholar 

Wright PT, Tsui SF, Francis AJ, MacLeod KT, Marston SB (2020) Approaches to high-throughput analysis of cardiomyocyte contractility. Front Physiol 11:612–612. https://doi.org/10.3389/fphys.2020.00612

Article  Google Scholar 

Yamada Y, Namba K, Fujii T (2020) Cardiac muscle thin filament structures reveal calcium regulatory mechanism. Nat Commun 11(1):153. https://doi.org/10.1038/s41467-019-14008-1

CAS  Article  PubMed  PubMed Central  Google Scholar 

Yang Z, Gould I, Marston S (2021) Molecular dynamics studies of the effects of phosphorylation and mutation on cardiac troponin dynamics. Acta Biochemica Polonica 68(S1):16

Google Scholar 

Yasuda S, Coutu P, Sadayappan S, Robbins J, Metzger JM (2007) Cardiac transgenic and gene transfer strategies converge to support an important role for troponin I in regulating relaxation in cardiac myocytes. Circ Res 101(4):377–386. https://doi.org/10.1161/CIRCRESAHA.106.145557

CAS  Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif