Disengaging the COVID-19 Clutch as a Discerning Eye Over the Inflammatory Circuit During SARS-CoV-2 Infection

Rabi, F.A., M.S. Al Zoubi, A.D. Al-Nasser, G.A. Kasasbeh, and D.M. Salameh. 2020. Sars-cov-2 and coronavirus disease 2019: What we know so far. Pathogens 9 (3): 1–14.

Article  Google Scholar 

Coronavirus disease (COVID-19). Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019.

Singh, P.S., A. Bhatnagar, K.S. Singh, K.S. Patra, N. Kanwar, A. Kanwal, et al. 2022. SARS-CoV-2 Infections, Impaired Tissue, and Metabolic Health: Pathophysiology and Potential Therapeutics. Mini-Reviews in Medicinal Chemistry 22:1. Available from: http://www.eurekaselect.com/article/120610.

Khanmohammadi, S., and N. Rezaei. 2021. Role of Toll-like receptors in the pathogenesis of COVID-19. Journal of Medical Virology 93(5):2735–9. Available from: https://pubmed.ncbi.nlm.nih.gov/33506952.

Patra, R., N. Chandra Das, and S. Mukherjee. 2021. Targeting human TLRs to combat COVID-19: A solution? Journal of Medical Virology 93(2):615–7. Available from: https://pubmed.ncbi.nlm.nih.gov/32749702.

Pratap, S.S. 2020. Clinical Application of the Main Viral Proteinase (Mpro or 3clpro) Inhibitors for Coronavirus Therapy. Biomedical Journal of Scientific and Technical Research 30 (3): 23352–23354.

Google Scholar 

Zhang, W., Y. Zhao, F. Zhang, Q. Wang, T. Li, Z. Liu, et al. 2020. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clinical Immunology 214:108393. Available from: https://pubmed.ncbi.nlm.nih.gov/32222466.

Campbell, A.M., M. Kashgarian, and M.J. Shlomchik. 2012. NADPH oxidase inhibits the pathogenesis of systemic lupus erythematosus. Science Translational Medicine 4(157):157ra141–157ra141. Available from: https://pubmed.ncbi.nlm.nih.gov/23100627.

Kelkka, T., D. Kienhöfer, M. Hoffmann, M. Linja, K. Wing, O. Sareila, et al. 2014. Reactive oxygen species deficiency induces autoimmunity with type 1 interferon signature. Antioxidants and Redox Signaling 21(16):2231–45. Available from: https://pubmed.ncbi.nlm.nih.gov/24787605.

Bedard, K., and K.-H. Krause. 2007. The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology. Physiological Reviews 87(1):245–313. Available from: https://doi.org/10.1152/physrev.00044.2005.

Reshi, M.L.,Y.-C. Su, and J.-R. Hong. 2014. RNA Viruses: ROS-Mediated Cell Death. International Journal of Cell Biology 2014:467452. Available from: https://pubmed.ncbi.nlm.nih.gov/24899897.

Li, T. 2020. Diagnosis and clinical management of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) infection: an operational recommendation of Peking Union Medical College Hospital (V2.0): Working Group of 2019 Novel Coronavirus, Peking Union Medical Colle. Emerging Microbes and Infections 9(1):582–5.

Chernyak, B.V., E.N. Popova, A.S. Prikhodko, O.A. Grebenchikov, L.A. Zinovkina, and R.A. Zinovkin. 2020. COVID-19 and Oxidative Stress. Biochemistry (Mosc). 85(12):1543–53. Available from: https://pubmed.ncbi.nlm.nih.gov/33705292.

Sedeek, M., R. Nasrallah, R.M. Touyz, and R.L. Hébert. 2013. NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. Journal of  the American Society of Nephrology 24(10):1512–8. Available from: https://pubmed.ncbi.nlm.nih.gov/23970124.

Dariya, B., and G.P. Nagaraju. 2020. Understanding novel COVID-19: Its impact on organ failure and risk assessment for diabetic and cancer patients. Cytokine and Growth Factor Reviews 53:43–52. Available from: https://pubmed.ncbi.nlm.nih.gov/32409230.

Chen, G., D. Wu, W. Guo, Y. Cao, D. Huang, H. Wang, et al. 2020. Clinical and immunological features of severe and moderate coronavirus disease 2019. Journal of the Clinical Investigation 130(5):2620–9. Available from: https://pubmed.ncbi.nlm.nih.gov/32217835.

Chi, Y., Y. Ge, B. Wu, W. Zhang, T. Wu, T. Wen, et al. 2020. Serum Cytokine and Chemokine Profile in Relation to the Severity of Coronavirus Disease 2019 in China. Journal of Infectious Diseases 222(5):746–54. Available from: https://pubmed.ncbi.nlm.nih.gov/32563194.

Han, Y., H. Zhang, S. Mu, W. Wei, C. Jin, C. Tong, et al. 2020. Lactate dehydrogenase, an independent risk factor of severe COVID-19 patients: a retrospective and observational study. Aging (Albany NY). 12(12):11245–58. Available from: https://pubmed.ncbi.nlm.nih.gov/32633729.

Wen, W., W. Su, H. Tang, W. Le, X. Zhang, Y. Zheng, et al. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell Discovery 6:31. Available from: https://pubmed.ncbi.nlm.nih.gov/32377375.

Lucas, C., P. Wong, J. Klein, T.B.R. Castro, J. Silva, M. Sundaram, et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 584(7821):463–9. Available from: https://pubmed.ncbi.nlm.nih.gov/32717743.

Huang, C., Y. Wang, X. Li, L. Ren, Zhao J, Hu Y, et al. 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet (London, England) 395(10223):497–506. Available from: https://pubmed.ncbi.nlm.nih.gov/31986264.

Ratajczak, M.Z., and M. Kucia. 2020. SARS-CoV-2 infection and overactivation of Nlrp3 inflammasome as a trigger of cytokine “storm” and risk factor for damage of hematopoietic stem cells. Leukemia 34(7):1726–9. Available from: https://pubmed.ncbi.nlm.nih.gov/32483300.

Rodrigues, T.S., K.S.G. de Sá, A.Y. Ishimoto, A. Becerra, S. Oliveira, L. Almeida, et al. 2021. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J Exp Med. 218(3):e20201707. Available from: https://pubmed.ncbi.nlm.nih.gov/33231615.

Damiano, S., C. Sozio, G. La Rosa, and M. Santillo. 2020. NOX-Dependent Signaling Dysregulation in Severe COVID-19: Clues to Effective Treatments. Frontiers in Cell Infectious Microbiology 10:608435. Available from: https://pubmed.ncbi.nlm.nih.gov/33384971.

Liu, B., M. Li, Z. Zhou, X. Guan, and Y. Xiang. 2020. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? Journal of Autoimmunity 111:102452. Available from: https://pubmed.ncbi.nlm.nih.gov/32291137.

Griendling, K.K., D. Sorescu, and M. Ushio-Fukai. NAD(P)H Oxidase. Circulation Research 86(5):494–501. Available from: https://doi.org/10.1161/01.RES.86.5.494.

Colling, M.E., and Y. Kanthi. COVID–19-associated coagulopathy: An exploration of mechanisms. Vascular Medical 25(5):471–8. Available from: https://doi.org/10.1177/1358863X20932640.

Cesari, M., M. Pahor, and R.A. Incalzi. 2010. Plasminogen activator inhibitor-1 (PAI-1): a key factor linking fibrinolysis and age-related subclinical and clinical conditions. Cardiovascular Therapy 28(5):e72–91. Available from: https://pubmed.ncbi.nlm.nih.gov/20626406.

Qin, L., Y. Liu, X. Qian, J.-S. Hong, and M.L. Block. 2005. Microglial NADPH Oxidase Mediates Leucine Enkephalin Dopaminergic Neuroprotection. Annals of the New York of Academy Sciences 1053(1):107–20. Available from: https://doi.org/10.1111/j.1749-6632.2005.tb00016.x.

Ha, H., and H.I.B. Lee. 2005. Reactive oxygen species amplify glucose signalling in renal cells cultured under high glucose and in diabetic kidney. Nephrology 10(s2):S7–10. Available from: https://doi.org/10.1111/j.1440-1797.2005.00448.x.

Salisbury, D., and U. Bronas. 2015. Reactive Oxygen and Nitrogen Species: Impact on Endothelial Dysfunction. Nursing Research. 64(1). Available from: https://journals.lww.com/nursingresearchonline/Fulltext/2015/01000/Reactive_Oxygen_and_Nitrogen_Species__Impact_on.7.aspx.

Katsuyama, M., C. Fan, and C. Yabe-Nishimura. 2002. NADPH Oxidase Is Involved in Prostaglandin F2α-induced Hypertrophy of Vascular Smooth Muscle Cells: INDUCTION OF NOX1 BY PGF2α*. Journal of Biological Chemistry. 277(16):13438–42. Available from: https://www.sciencedirect.com/science/article/pii/S0021925819609312.

Chen, C., L. Li, H.J. Zhou, and W. Min. 2017. The Role of NOX4 and TRX2 in Angiogenesis and Their Potential Cross-Talk. Antioxidants (Basel, Switzerland). 6(2):42. Available from: https://pubmed.ncbi.nlm.nih.gov/28594389.

Seshiah, P.N., D.S. Weber, P. Rocic, L. Valppu, Y. Taniyama, K.K. Griendling. 2002. Angiotensin II Stimulation of NAD(P)H Oxidase Activity. Circulation Research. 91(5):406–13. Available from: https://doi.org/10.1161/01.RES.0000033523.08033.16.

Vlahos, R., and S. Selemidis. 2014. NADPH Oxidases as Novel Pharmacologic Targets against Influenza A Virus Infection. Molecular Pharmacology 86(6):747 LP – 759. Available from: http://molpharm.aspetjournals.org/content/86/6/747.abstract.

Rada, B.K., M. Geiszt, K. Káldi, C. Timár, and E. Ligeti. 2004. Dual role of phagocytic NADPH oxidase in bacterial killing. Blood 104(9):2947–53. Available from: https://www.sciencedirect.com/science/article/pii/S0006497120559715.

Frey, R.S., M. Ushio–Fukai, and A.B. Malik. 2008. NADPH Oxidase-Dependent Signaling in Endothelial Cells: Role in Physiology and Pathophysiology. Antioxidants and Redox Signaling 11(4):791–810. Available from: https://doi.org/10.1089/ars.2008.2220.

Zheng, J., and S. 2018. Perlman. Immune responses in influenza A virus and human coronavirus infections: an ongoing battle between the virus and host. Current Opinion Virology 28:43–52. Available from: https://www.sciencedirect.com/science/article/pii/S1879625717301190.

Vlahos, R., J. Stambas, and S. Selemidis. 2012. Suppressing production of reactive oxygen species (ROS) for influenza A virus therapy. Trends in Pharmacological Sciences 33(1):3–8. Available from: https://www.sciencedirect.com/science/article/pii/S0165614711001593.

Wu, F., S. Zhao, B. Yu, Y.-M. Chen, W. Wang, Z.-G. Song, et al. 2020. A new coronavirus associated with human respiratory disease in China. Nature 579(7798):265–9. Available from: https://pubmed.ncbi.nlm.nih.gov/32015508.

de Wit, E., N. van Doremalen, D. Falzarano, and V.J. Munster. 2016. SARS and MERS: recent insights into emerging coronaviruses. Nature Reviews Microbiology 14(8):523–34. Available from: https://pubmed.ncbi.nlm.nih.gov/27344959.

Haber, F., J. Weiss, and W.J. Pope. The catalytic decomposition of hydrogen peroxide by iron salts. Proceedings of the Royal Society of London Series A - Mathematical and Physical Sciences 147(861):332–51. Available from: https://doi.org/10.1098/rspa.1934.0221.

Verdecchia, P., C. Cavallini, A. Spanevello, and F. Angeli. 2020. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. European Journal Internal Medicine 76:14–20. Available from: https://pubmed.ncbi.nlm.nih.gov/32336612.

Turner, A.J., J.A. Hiscox, and N.M. Hooper. ACE2: from vasopeptidase to SARS virus receptor. Trends in Pharmacological Sciences 25(6):291–4. Available from: https://pubmed.ncbi.nlm.nih.gov/15165741.

Delgado-Roche, L., and F. Mesta. Oxidative Stress as Key Player in Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) Infection. Archives of Medical Research 51(5):384–7. Available from: https://pubmed.ncbi.nlm.nih.gov/32402576.

Khomich, O.A., S.N. 2018. Kochetkov, B. Bartosch, and A.V. Ivanov. Redox Biology of Respiratory Viral Infections. Viruses 10(8):392. Available from: https://pubmed.ncbi.nlm.nih.gov/30049972.

Barciszewska, A.-M. 2021. Elucidating of oxidative distress in COVID-19 and methods of its prevention. Chemico-Biological Interaction 344:109501. Available from: https://pubmed.ncbi.nlm.nih.gov/33974898.

Camini, F.C., C.C. da Silva Caetano, L.T. Almeida, and C.L. de Brito Magalhães. 2017. Implications of oxidative stress on viral pathogenesis. Archives of Virology 162(4):907–17. Available from: https://doi.org/10.1007/s00705-016-3187-y.

Ivanov, A.V., V.T. Valuev-Elliston, O.N. Ivanova, S.N. Kochetkov, E.S. Starodubova, B. Bartosch, et al. 2016. Oxidative Stress during HIV Infection: Mechanisms and Consequences. Oxidative Medical and Cellular Longevity 2016:8910396. Available from: https://pubmed.ncbi.nlm.nih.gov/27829986.

Mehta, P., D.F. McAuley, M. Brown, E. Sanchez, R.S. Tattersall, J.J. Manson, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet (London, England). 395(10229):1033–4. Available from: https://pubmed.ncbi.nlm.nih.gov/32192578.

Waris, G., and Ahsan, H. 2006. Reactive oxygen species: role in the development of cancer and various chronic conditions. Journal of Carcinogenesis 5:14. Available from: https://pubmed.ncbi.nlm.nih.gov/16689993.

Sorokin, A.V., S.K. Karathanasis, Z.-H. Yang, L. Freeman, K. Kotani, A.T. Remaley. 2020. COVID-19-Associated dyslipidemia: Implications for mechanism of impaired resolution and novel therapeutic approaches. FASEB Journal 34(8):9843–53. Available from: https://pubmed.ncbi.nlm.nih.gov/32588493.

Valko, M., C.J. Rhodes, J. Moncol, M. Izakovic, and M. Mazur. 2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions 160(1):1–40. Available from: https://www.sciencedirect.com/science/article/pii/S0009279705004333.

Kell, D.B., and E. Pretorius. 2014.  Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells. Metallomics 6(4):748–73. Available from: https://doi.org/10.1039/c3mt00347g.

Nakabeppu, Y. 2014. Cellular levels of 8-oxoguanine in either DNA or the nucleotide pool play pivotal roles in carcinogenesis and survival of cancer cells. International Journal of Molecular Sciences 15(7):12543–57. Available from: https://pubmed.ncbi.nlm.nih.gov/25029543.

Habtemariam, S. 2019. Modulation of Reactive Oxygen Species in Health and Disease. Antioxidants (Basel, Switzerland). 8(11):513. Available from: https://pubmed.ncbi.nlm.nih.gov/31717825.

Zorov, D.B., M. Juhaszova, and S.J. Sollott. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiological Review 94(3):909–50. Available from: https://pubmed.ncbi.nlm.nih.gov/24987008.

Petlicki, J., and T.G.M. van de Ven. 1998. The equilibrium between the oxidation of hydrogen peroxide by oxygen and the dismutation of peroxyl or superoxide radicals in aqueous solutions in contact with oxygen. Journal of Chemical Society, Faraday Transactions 94(18):2763–7. Available from: https://doi.org/10.1039/A804551H.

Bedwell, S., R.T. Dean, and W. Jessup. 1989. The action of defined oxygen-centred free radicals on human low-density lipoprotein. Biochemical Journal 262(3):707–12. Available from: https://pubmed.ncbi.nlm.nih.gov/2556107.

Chatgilialoglu, C., C. Ferreri, M.G. Krokidis, A. Masi, and M.A. Terzidis. 2021. On the relevance of hydroxyl radical to purine DNA damage. Free Radical Research 55(4):384–404. Available from: https://doi.org/10.1080/10715762.2021.1876855.

Montgomery, E.B. 1995. Heavy metals and the etiology of Parkinson’s disease and other movement disorders. Toxicology 97(1):3–9. Available from: https://www.sciencedirect.com/science/article/pii/0300483X9402962T.

Schipper, H.M., R. Vininsky, R. Brull, L. Small, and J.R. Brawer. 1998. Astrocyte Mitochondria: A Substrate for Iron Deposition in the Aging Rat Substantia Nigra. Experimental Neurology 152(2):188–96. Available from: https://www.sciencedirect.com/science/article/pii/S0014488698968546.

Schipper, H.M. 2004. Brain iron deposition and the free radical-mitochondrial theory of ageing. Ageing Research Reviews 3(3):265–301. Available from: https://www.sciencedirect.com/science/article/pii/S156816370400011X.

Acton, R.T., J.C. Barton, L.V. Passmore, P.C. Adams, G.D. McLaren, C. Leiendecker-Foster, et al. Accuracy of family history of hemochromatosis or iron overload: the hemochromatosis and iron overload screening study. Clinical Gastroenterology and Hepatology 6(8):934–8. Available from: https://pubmed.ncbi.nlm.nih.gov/18585964.

Buxton, G.V., C.L. Greenstock, W.P. Helman, and A.B. Ross. 1988. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in Aqueous Solution. Journal of Physical and Chemical Reference Data 17(2):513–886. Available from: https://doi.org/10.1063/1.555805.

Wardman, P. 1989. Reduction Potentials of One Electron Couples Involving Free Radicals in Aqueous Solution. Journal Physical and Chemical Reference Data 18(4):1637–755. Available from: https://doi.org/10.1063/1.555843.

Ozaki, E., M. Campbell, and S.L. Doyle. 2015. Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives. Journal of Inflammation Research 8:15–27. Available from: https://pubmed.ncbi.nlm.nih.gov/25653548.

Swanson, K.V., M. Deng, and J.P.-Y. Ting. 2019. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nature Reviews Immunology 19(8):477–89. Available from: https://pubmed.ncbi.nlm.nih.gov/31036962.

Mangan, M.S.J., E.J. Olhava, W.R. Roush, H.M. Seidel, G.D. Glick, and E. Latz. 2018. Targeting the NLRP3 inflammasome in inflammatory diseases. Nature Reviews Drug Discovery 17(8):588–606. Available from: https://doi.org/10.1038/nrd.2018.97.

Hauenstein, A.V., L. Zhang, and H. Wu. 2015. The hierarchical structural architecture of inflammasomes, supramolecular inflammatory machines. Current Opinion in Structural Biology 31:75–83. Available from: https://pubmed.ncbi.nlm.nih.gov/25881155.

Hosseinian, N., Y. Cho, R.F. Lockey, and N. Kolliputi. 2015. The role of the NLRP3 inflammasome in pulmonary diseases. Therapeutic Advances in Respiratory Disease 9(4):188–97. Available from: https://doi.org/10.1177/1753465815586335.

Hirano, S.-I., Y. Ichikawa, B. Sato, H. Yamamoto, Y. Takefuji, and F. Satoh. 2021. Potential Therapeutic Applications of Hydrogen in Chronic Inflammatory Diseases: Possible Inhibiting Role on Mitochondrial Stress. International Journal of Molecular Sciences 22(5):2549. Available from: https://pubmed.ncbi.nlm.nih.gov/33806292.

Tschopp, J. 2011. Mitochondria: Sovereign of inflammation? European Journal of Immunology 41(5):1196–202. Available from: https://doi.org/10.1002/eji.201141436.

Ren, J.-D., X.-B. Wu, R. Jiang, D.-P. Hao, and Y. Liu. 2016. Molecular hydrogen inhibits lipopolysaccharide-triggered NLRP3 inflammasome activation in macrophages by targeting the mitochondrial reactive oxygen species. Biochimica et Biophysica Acta-Molecular Cell Research 1863(1):50–5. Available from: https://www.sciencedirect.com/science/article/pii/S0167488915003651.

Ohsawa, I., M. Ishikawa, K. Takahashi, M. Watanabe, K. Nishimaki, K. Yamagata, et al. 2007. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nature Medicine 13(6):688–94. Available from: https://doi.org/10.1038/nm1577.

Guan, W.-J., C.-H. Wei, A.-L. Chen, X.-C. Sun, G.-Y. Guo, X. Zou, et al. 2020. Hydrogen/oxygen mixed gas inhalation improves disease severity and dyspnea in patients with Coronavirus disease 2019 in a recent multicenter, open-label clinical trial. Journal of Thoracic Disease 12(6):3448–52. Available from: https://pubmed.ncbi.nlm.nih.gov/32642277.

Yang, L., Y. Guo, X. Fan, Y. Chen, B. Yang, K.-X. Liu, et al. 2020. Amelioration of Coagulation Disorders and Inflammation by Hydrogen-Rich Solution Reduces Intestinal Ischemia/Reperfusion Injury in Rats through NF-κB/NLRP3 Pathway. Mediators of Inflammation 2020:4359305. Available from: https://pubmed.ncbi.nlm.nih.gov/32587471.

Channappanavar, R., and S. Perlman. 2017. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Seminars in Immunopathology 39(5):529–39. Available from: https://pubmed.ncbi.nlm.nih.gov/28466096.

Fraser, D.D., E.K. Patterson, M. Slessarev, S.E. Gill, C. Martin, M. Daley, et al. 2020. Endothelial Injury and Glycocalyx Degradation in Critically Ill Coronavirus Disease 2019 Patients: Implications for Microvascular Platelet Aggregation. Critical Care Explorations 2(9):e0194–e0194. Available from: https://pubmed.ncbi.nlm.nih.gov/32904031.

Becker, R.C. 2020. COVID-19 update: Covid-19-associated coagulopathy. Journal of Thrombosis Thrombolysis 50(1):54–67. Available from: https://pubmed.ncbi.nlm.nih.gov/32415579.

Ozdemir, B., and A. Yazici. 2020. Could the decrease in the endothelial nitric oxide (NO) production and NO bioavailability be the crucial cause of COVID-19 related deaths? Medical Hypotheses 144:109970. Available from: https://pubmed.ncbi.nlm.nih.gov/32534341.

Amraei, R., and N. Rahimi. 2020. COVID-19, Renin-Angiotensin System and Endothelial Dysfunction. Cells 9(7):1652. Available from: https://pubmed.ncbi.nlm.nih.gov/32660065.

Fang, W., J. Jiang, L. Su, T. Shu, H. Liu, S. Lai, et al. 2021. The role of NO in COVID-19 and potential therapeutic strategies. Free Radical and Biology Medicine 163:153–62. Available from: https://pubmed.ncbi.nlm.nih.gov/33347987.

Bohlen, H.G. 2015. Nitric Oxide and the Cardiovascular System. Comprehensive Physiology 2015. p. 803–28. (Major Reference Works). Available from: https://doi.org/10.1002/cphy.c140052.

Teixeira, R., M. Santos, and V. Gil. 2020. COVID-19 and cardiovascular comorbidities: An update. Revista Portuguesa de Cardiologia 39(8):417–9. Available from: https://pubmed.ncbi.nlm.nih.gov/32718858.

Banu, N., S.S. Panikar, L.R. Leal, and A.R. Leal. 2020. Protective role of ACE2 and its downregulation in SARS-CoV-2 infection leading to Macrophage Activation Syndrome: Therapeutic implications. Life Sciences 256:117905. Available from: https://pubmed.ncbi.nlm.nih.gov/32504757.

Boscá, L., M. Zeini, P.G. Través, and S. Hortelano. 2005. Nitric oxide and cell viability in inflammatory cells: a role for NO in macrophage function and fate. Toxicology 208(2):249–58. Available from: https://www.sciencedirect.com/science/article/pii/S0300483X04006237.

Li, H., Z. Liu, and J. Ge. 2020. Scientific research progress of COVID-19/SARS-CoV-2 in the first five months. Journal of Cellular Molecular Medicine 24(12):6558–70. Available from: https://pubmed.ncbi.nlm.nih.gov/32320516.

Varga, Z., A.J. Flammer, P. Steiger, M. Haberecker, R. Andermatt, A.S. Zinkernagel, et al. 2020. Endothelial cell infection and endotheliitis in COVID-19. Lancet 395(10234):1417–8. Available from: https://www.sciencedirect.com/science/article/pii/S0140673620309375.

Song, P., W. Li, J. Xie, Y. Hou, and C. You. 2020. Cytokine storm induced by SARS-CoV-2. Clinical Chimica Acta 509:280–7. Available from: https://pubmed.ncbi.nlm.nih.gov/32531256.

Shenoy, S. 2020. Coronavirus (Covid-19) sepsis: revisiting mitochondrial dysfunction in pathogenesis, aging, inflammation, and mortality. Inflammation Research 69(11):1077–85. Available from: https://pubmed.ncbi.nlm.nih.gov/32767095.

Urso, C., and G. Caimi. 2011. [Oxidative stress and endothelial dysfunction]. Minerva Medicolegale 102(1):59–77. Available from: http://europepmc.org/abstract/MED/21317849.

Akerström, S., M. Mousavi-Jazi, J. Klingström, M. Leijon, A. Lundkvist, and A. Mirazimi. 2005. Nitric oxide inhibits the replication cycle of severe acute respiratory syndrome coronavirus. Journal of Virology 79(3):1966–9. Available from: https://pubmed.ncbi.nlm.nih.gov/15650225.

Akerström, S., V. Gunalan, C.T. Keng, and Y.-T. Tan, A. 2009. Mirazimi. Dual effect of nitric oxide on SARS-CoV replication: viral RNA production and palmitoylation of the S protein are affected. Virology 395(1):1–9. Available from: https://pubmed.ncbi.nlm.nih.gov/19800091.

Báez-Santos, Y.M., S.E. St John, and A.D. Mesecar. 2015. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antiviral Research 115:21–38. Available from: https://pubmed.ncbi.nlm.nih.gov/25554382.

Snijder, E.J., E. Decroly, and J. Ziebuhr. 2016. The Nonstructural Proteins Directing Coronavirus RNA Synthesis and Processing. Advances in Virus Research 96:59–126. Available from: https://pubmed.ncbi.nlm.nih.gov/27712628.

Mannick. J.B. 1995. The antiviral role of nitric oxide. Research Immunology 146(9):693–7. Available from: https://www.sciencedirect.com/science/article/pii/0923249496849200.

Pambuccian, S.E. 2020. The COVID-19 pandemic: implications for the cytology laboratory. Journal of the American Society of Cytopathology 9(3):202–11. Available from: https://doi.org/10.1016/j.jasc.2020.03.001.

Lu, R., X. Zhao, J. Li, P. Niu, B. Yang, H. Wu, et al. 2020. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395(10224):565–74. Available from: https://www.sciencedirect.com/science/article/pii/S0140673620302518.

Stefano, G.B., T. Esch, and R.M. Kream. 2020. Potential Immunoregulatory and Antiviral/SARS-CoV-2 Activities of Nitric Oxide. Medical Science Monitor 26:e925679–e925679. Available from: https://pubmed.ncbi.nlm.nih.gov/32454510.

Letko, M., A. Marzi, and V. Munster. 2020. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature Microbiology 5(4):562–9. Available from: https://pubmed.ncbi.nlm.nih.gov/32094589.

Harrois, A., O. Huet, and J. Duranteau. 2009. Alterations of mitochondrial function in sepsis and critical illness. Current Opinion in Anesthesiology 22(2). Available from: https://journals.lww.com/co-anesthesiology/Fulltext/2009/04000/Alterations_of_mitochondrial_function_in_sepsis.3.aspx.

Ma, J., P. Xia, Y. Zhou, Z. Liu, X. Zhou, J. Wang, et al. 2020. Potential effect of blood purification therapy in reducing cytokine storm as a late complication of critically ill COVID-19. Clinical Immunology 214:108408. Available from: https://pubmed.ncbi.nlm.nih.gov/32247038.

Murphy, M.P. 2013. Mitochondrial Dysfunction Indirectly Elevates ROS Production by the Endoplasmic Reticulum. Cell Metabolism 18(2):145–6. Available from: https://www.sciencedirect.com/science/article/pii/S1550413113002957.

McBride, H.M., M. Neuspiel, and S. Wasiak. 2006. Mitochondria: More Than Just a Powerhouse. Current Biology 16(14):R551–60. Available from: https://www.sciencedirect.com/science/article/pii/S0960982206017817.

Chan, D.C. 2006. Mitochondria: Dynamic Organelles in Disease, Aging, and Development. Cell 125(7):1241–52. Available from: https://www.sciencedirect.com/science/article/pii/S0092867406007689.

Kim, S.-J., M. Khan, J. Quan, A. Till, S. Subramani, and A. Siddiqui. 2013. Hepatitis B virus disrupts mitochondrial dynamics: induces fission and mitophagy to attenuate apoptosis. PLoS Pathogens 9(12):e1003722–e1003722. Available from: https://pubmed.ncbi.nlm.nih.gov/24339771.

Kim, S.-J., G.H. Syed, and A. Siddiqui. 2013. Hepatitis C virus induces the mitochondrial translocation of Parkin and subsequent mitophagy. PLoS Pathogens 9(3):e1003285–e1003285. Available from: https://pubmed.ncbi.nlm.nih.gov/23555273.

Seth, R.B., L. Sun, C.-K. Ea, and Z.J. Chen. 2005. Identification and Characterization of MAVS, a Mitochondrial Antiviral Signaling Protein that Activates NF-κB and IRF3. Cell 122(5):669–82. Available from: https://www.sciencedirect.com/science/article/pii/S0092867405008160.

Frank, M., S. Duvezin-Caubet, S. Koob, A. Occhipinti, R. Jagasia, A. Petcherski, et al. 2012. Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner. Biochimica et Biophysica Acta - Molecular Cell Research 1823(12):2297–310. Available from: https://www.sciencedirect.com/science/article/pii/S0167488912002315.

Sena, L.A., and N.S. Chandel. 2012. Physiological roles of mitochondrial reactive oxygen species. Molecular Cell 48(2):158–67. Available from: https://pubmed.ncbi.nlm.nih.gov/23102266.

Singh, S.P., S. Amar, P. Gehlot, S.K. Patra, N. Kanwar, and A. Kanwal. 2021. Mitochondrial Modulations, Autophagy Pathways Shifts in Viral Infections: Consequences of COVID-19. International Journal of Molecular Sciences 22(15):8180. Available from: https://pubmed.ncbi.nlm.nih.gov/34360945.

Li, H., L. Liu, D. Zhang, J. Xu, H. Dai, N. Tang, et al. 2020. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet (London, England) 395(10235):1517–20. Available from: https://pubmed.ncbi.nlm.nih.gov/32311318.

Chen, X., B.T. Andresen1, M. Hill, J. Zhang, F. Booth, and C. Zhang. 2008. Role of Reactive Oxygen Species in Tumor Necrosis Factor-alpha Induced Endothelial Dysfunction. Current Hypertension Reviews 4(4):245–55. Available from: https://pubmed.ncbi.nlm.nih.gov/20559453.

Li, J., X. Gong, Z. Wang, R. Chen, T. Li, D. Zeng, et al. 2020. Clinical features of familial clustering in patients infected with 2019 novel coronavirus in Wuhan, China. Virus Research 286:198043. Available from: https://pubmed.ncbi.nlm.nih.gov/32502551.

Lee, J., S. Giordano, and J. Zhang. 2012. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochemical Journal 441(2):523–40. Available from: https://pubmed.ncbi.nlm.nih.gov/22187934.

Okamoto, K., and N. Kondo-Okamoto. 2012. Mitochondria and autophagy: Critical interplay between the two homeostats. Biochimica Biophysica Acta - General Subjects 1820(5):595–600. Available from: https://www.sciencedirect.com/science/article/pii/S030441651100184X.

Venco, P., M. Bonora, C. Giorgi, E. Papaleo, A. Iuso, H. Prokisch, et al. 2015. Mutations of C19orf12, coding for a transmembrane glycine zipper containing mitochondrial protein, cause mis-localization of the protein, inability to respond to oxidative stress and increased mitochondrial Ca2+. Frontiers in Genetics 6:185. Available from: https://www.frontiersin.org/article/10.3389/fgene.2015.00185.

Ueno, T., and M. Komatsu. 2017. Autophagy in the liver: functions in health and disease. Nature Reviews Gastroenterology & Hepatology 14(3):170–84. Available from: https://doi.org/10.1038/nrgastro.2016.185.

Menzies, F.M., A. Fleming, A. Caricasole, C.F. Bento, S.P. Andrews, A. Ashkenazi A, et al. 2017. Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities. Neuron 93(5):1015–34. Available from: https://www.sciencedirect.com/science/article/pii/S0896627317300466.

Lin, T.-A., V.C.-C. Wu, and C.-Y. Wang. 2019. Autophagy in Chronic Kidney Diseases. Cells 8(1):61. Available from: https://pubmed.ncbi.nlm.nih.gov/30654583.

Bravo-San Pedro, J.M., G. Kroemer, and L. Galluzzi. 2017. Autophagy and Mitophagy in Cardiovascular Disease. Circulation Research 120(11):1812–24. Available from: https://doi.org/10.1161/CIRCRESAHA.117.311082.

Kindrachuk, J., B. Ork, B.J. Hart, S. Mazur, M.R. Holbrook, M.B. Frieman, et al. 2015. Antiviral potential of ERK/MAPK and PI3K/AKT/mTOR signaling modulation for Middle East respiratory syndrome coronavirus infection as identified by temporal kinome analysis. Antimicrobial Agents and Chemotheraphy 59(2):1088–99. Available from: https://pubmed.ncbi.nlm.nih.gov/25487801.

Reggiori, F., I. Monastyrska, M.H. Verheije, T. Calì, M. Ulasli, S. Bianchi, et al. Coronaviruses Hijack the LC3-I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication. Cell Host and Microbe 7(6):500–8. Available from: https://pubmed.ncbi.nlm.nih.gov/20542253.

Prentice, E., W.G. Jerome, T. Yoshimori, N. Mizushima, M.R. Denison. 2003. Coronavirus replication complex formation utilizes components of cellular autophagy. Journal of Biological Chemistry 279(11):10136–41. Available from: https://pubmed.ncbi.nlm.nih.gov/14699140.

Vincent, M.J., E. Bergeron, S. Benjannet, B.R. Erickson, P.E. Rollin, T.G. Ksiazek, et al. 2005. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology Journal 2(1):69. Available from: https://doi.org/10.1186/1743-422X-2-69.

Gassen, N.C.,  Niemeyer D, Muth D, Corman VM, Martinelli S, Gassen A, et al. 2019. SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS-Coronavirus infection. Nature Communications 10(1):5770. Available from:

留言 (0)

沒有登入
gif