Ti Ions Induce IL-1β Release by Activation of the NLRP3 Inflammasome in a Human Macrophage Cell Line

Weir, A., P. Westerhoff, L. Fabricius, K. Hristovski, and N. Von Goetz. 2012. Titanium dioxide nanoparticles in food and personal care products. Environmental Science and Technology 46 (4): 2242–2250. https://doi.org/10.1021/es204168d.

CAS  Article  PubMed  Google Scholar 

Pettersson, M., P. Kelk, G.N. Belibasakis, D. Bylund, M. Molin Thoren, and A. Johansson. 2017. Titanium ions form particles that activate and execute interleukin-1beta release from lipopolysaccharide-primed macrophages. Journal of periodontal research. 52 (1): 21–32. https://doi.org/10.1111/jre.12364.

CAS  Article  PubMed  Google Scholar 

Mangan, M.S.J., E.J. Olhava, W.R. Roush, H.M. Seidel, G.D. Glick, and E. Latz. 2018. Targeting the NLRP3 inflammasome in inflammatory diseases. Nature Reviews. Drug Discovery 17 (8): 588–606. https://doi.org/10.1038/nrd.2018.97.

CAS  Article  PubMed  Google Scholar 

Li, X., L. Tang, T. Ye Myat, and D. Chen. 2020. Titanium ions play a synergistic role in the activation of NLRP3 inflammasome in Jurkat T cells. Inflammation 43 (4): 1269–1278. https://doi.org/10.1007/s10753-020-01206-z.

CAS  Article  PubMed  Google Scholar 

Swanson, K.V., M. Deng, and J.P. Ting. 2019. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nature Reviews Immunology. 19 (8): 477–489. https://doi.org/10.1038/s41577-019-0165-0.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bauernfeind, F.G., G. Horvath, A. Stutz, E.S. Alnemri, K. MacDonald, D. Speert, et al. 2009. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. Journal of immunology. 183 (2): 787–791. https://doi.org/10.4049/jimmunol.0901363.

CAS  Article  Google Scholar 

Baron, L., A. Gombault, M. Fanny, B. Villeret, F. Savigny, N. Guillou, et al. 2015. The NLRP3 inflammasome is activated by nanoparticles through ATP, ADP and adenosine. Cell Death & Disease 6 (2): e1629. https://doi.org/10.1038/cddis.2014.576.

CAS  Article  Google Scholar 

Dostert, C., V. Petrilli, R. Van Bruggen, C. Steele, B.T. Mossman, and J. Tschopp. 2008. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320 (5876): 674–677. https://doi.org/10.1126/science.1156995.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Moon, C., H.J. Park, Y.H. Choi, E.M. Park, V. Castranova, and J.L. Kang. 2010. Pulmonary inflammation after intraperitoneal administration of ultrafine titanium dioxide (TiO2) at rest or in lungs primed with lipopolysaccharide. Journal of Toxicology and Environmental Health Part A. 73 (5): 396–409. https://doi.org/10.1080/15287390903486543.

CAS  Article  PubMed  Google Scholar 

Pettersson, M., J. Pettersson, M. Molin Thoren, and A. Johansson. 2018. Effect of cobalt ions on the interaction between macrophages and titanium. Journal of Biomedical Materials Research Part A. 106 (9): 2518–2530. https://doi.org/10.1002/jbm.a.36447.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Jo, E.K., J.K. Kim, D.M. Shin, and C. Sasakawa. 2016. Molecular mechanisms regulating NLRP3 inflammasome activation. Cellular & Molecular Immunology 13 (2): 148–159. https://doi.org/10.1038/cmi.2015.95.

CAS  Article  Google Scholar 

Chevriaux, A., T. Pilot, V. Derangere, H. Simonin, P. Martine, F. Chalmin, et al. 2020. Cathepsin B is required for NLRP3 inflammasome activation in macrophages, through NLRP3 interaction. Frontiers in Cell and Development Biology. 8: 167. https://doi.org/10.3389/fcell.2020.00167.

Article  PubMed  PubMed Central  Google Scholar 

Weber, K., and J.D. Schilling. 2014. Lysosomes integrate metabolic-inflammatory cross-talk in primary macrophage inflammasome activation. The Journal of biological chemistry. 289 (13): 9158–9171. https://doi.org/10.1074/jbc.M113.531202.

CAS  Article  PubMed  PubMed Central  Google Scholar 

He, Y., H. Hara, and G. Nunez. 2016. Mechanism and regulation of NLRP3 inflammasome activation. Trends in Biochemical Sciences 41 (12): 1012–1021. https://doi.org/10.1016/j.tibs.2016.09.002.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Beigi, R.D., S.B. Kertesy, G. Aquilina, and G.R. Dubyak. 2003. Oxidized ATP (oATP) attenuates proinflammatory signaling via P2 receptor-independent mechanisms. British Journal of Pharmacology 140 (3): 507–519. https://doi.org/10.1038/sj.bjp.0705470.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Garlanda, C., C.A. Dinarello, and A. Mantovani. 2013. The interleukin-1 family: Back to the future. Immunity 39 (6): 1003–1018. https://doi.org/10.1016/j.immuni.2013.11.010.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Pettersson, M., J. Pettersson, A. Johansson, and Thoren M. Molin. 2019. Titanium release in peri-implantitis. Journal of Oral Rehabilitation 46 (2): 179–188. https://doi.org/10.1111/joor.12735.

CAS  Article  PubMed  Google Scholar 

Soler, M.D., S.M. Hsu, C. Fares, F. Ren, R.J. Jenkins, L. Gonzaga, et al. 2020. Titanium corrosion in peri-implantitis. Materials (Basel). 13(23). https://doi.org/10.3390/ma13235488

Berryman, Z., L. Bridger, H.M. Hussaini, A.M. Rich, M. Atieh, and A. Tawse-Smith. 2020. Titanium particles: An emerging risk factor for peri-implant bone loss. Saudi Dental Journal 32 (6): 283–292. https://doi.org/10.1016/j.sdentj.2019.09.008.

Article  PubMed  Google Scholar 

Delgado-Ruiz, R., and G. Romanos. 2018. Potential causes of titanium particle and ion release in implant dentistry: a systematic review. International Journal of Molecular Sciences. 19(11). https://doi.org/10.3390/ijms19113585

Wilson, T.G., Jr. 2021. Bone loss around implants-is it metallosis? Journal of Periodontology. 92 (2): 181–185. https://doi.org/10.1002/JPER.20-0208.

CAS  Article  PubMed  Google Scholar 

Eger, M., N. Sterer, T. Liron, D. Kohavi, and Y. Gabet. 2017. Scaling of titanium implants entrains inflammation-induced osteolysis. Science and Reports 7: 39612. https://doi.org/10.1038/srep39612.

CAS  Article  Google Scholar 

Rasul, J., M.K. Thakur, B. Maheshwari, N. Aga, H. Kumar, and M. Mahajani. 2021. Assessment of titanium level in submucosal plaque around healthy implants and implants with peri-implantitis: A clinical study. Journal of Pharmacy & Bioallied Sciences. 13 (Suppl 1): S383–S386. https://doi.org/10.4103/jpbs.JPBS_815_20.

CAS  Article  Google Scholar 

Kelk, P., N.S. Moghbel, J. Hirschfeld, and A. Johansson. 2022. Aggregatibacter actinomycetemcomitans leukotoxin activates the NLRP3 inflammasome and cell-to-cell communication. Pathogens. 11(2). https://doi.org/10.3390/pathogens11020159

Repetto, G., A. del Peso, and J.L. Zurita. 2008. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nature Protocols 3 (7): 1125–1131. https://doi.org/10.1038/nprot.2008.75.

CAS  Article  PubMed  Google Scholar 

Spurr, A.R. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructure Research 26 (1): 31–43.

CAS  Article  Google Scholar 

Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, et al. 2012. Fiji: An open-source platform for biological-image analysis. Nature Methods 9 (7): 676–682. https://doi.org/10.1038/nmeth.2019.

CAS  Article  PubMed  Google Scholar 

Bergsbaken, T., S.L. Fink, and B.T. Cookson. 2009. Pyroptosis: Host cell death and inflammation. Nature Reviews Microbiology 7 (2): 99–109. https://doi.org/10.1038/nrmicro2070.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Tschopp, J., and K. Schroder. 2010. NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production? Nature reviews Immunology. 10 (3): 210–215. https://doi.org/10.1038/nri2725.

CAS  Article  PubMed  Google Scholar 

Di Virgilio, F., D. Dal Ben, A.C. Sarti, A.L. Giuliani, and S. Falzoni. 2017. The P2X7 receptor in infection and inflammation. Immunity 47 (1): 15–31. https://doi.org/10.1016/j.immuni.2017.06.020.

CAS  Article  PubMed  Google Scholar 

Hu, Q., F. Zhao, M. Fan, C. He, X. Yang, Z. Huang, et al. 2019. The influence of titanium dioxide nanoparticles on their cellular response to macrophage cells. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 223: 42–52. https://doi.org/10.1016/j.cbpc.2019.05.006.

CAS  Article  Google Scholar 

Chen, Q., N. Wang, M. Zhu, J. Lu, H. Zhong, X. Xue, et al. 2018. TiO2 nanoparticles cause mitochondrial dysfunction, activate inflammatory responses, and attenuate phagocytosis in macrophages: A proteomic and metabolomic insight. Redox Biology 15: 266–276. https://doi.org/10.1016/j.redox.2017.12.011.

CAS  Article  PubMed  Google Scholar 

Abbasi-Oshaghi, E., F. Mirzaei, and M. Pourjafar. 2019. NLRP3 inflammasome, oxidative stress, and apoptosis induced in the intestine and liver of rats treated with titanium dioxide nanoparticles: In vivo and in vitro study. International Journal of Nanomedicine 14: 1919–1936. https://doi.org/10.2147/IJN.S192382.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zhou, Y., J. Ji, L. Ji, L. Wang, and F. Hong. 2019. Respiratory exposure to nano-TiO2 induces pulmonary toxicity in mice involving reactive free radical-activated TGF-beta/Smad/p38MAPK/Wnt pathways. Journal of Biomedical Materials Research Part A. 107 (11): 2567–2575. https://doi.org/10.1002/jbm.a.36762.

CAS  Article  PubMed  Google Scholar 

Ramenzoni, L.L., L.B. Fluckiger, T. Attin, and P.R. Schmidlin. 2021. Effect of titanium and zirconium oxide microparticles on pro-inflammatory response in human macrophages under induced sterile inflammation: an in vitro study. Materials (Basel). 14(15). https://doi.org/10.3390/ma14154166

Messous, R., B. Henriques, H. Bousbaa, F.S. Silva, W. Teughels, and J.C.M. Souza. 2021. Cytotoxic effects of submicron- and nano-scale titanium debris released from dental implants: An integrative review. Clinical Oral Investigations 25 (4): 1627–1640. https://doi.org/10.1007/s00784-021-03785-z.

Article  PubMed  Google Scholar 

Shabbir, S., M.F. Kulyar, Z.A. Bhutta, P. Boruah, and M. Asif. 2021. Toxicological consequences of titanium dioxide nanoparticles (TiO2NPs) and their jeopardy to human population. Bionanoscience. 1–12. https://doi.org/10.1007/s12668-021-00836-3

Charalampakis, G., and G.N. Belibasakis. 2015. Microbiome of peri-implant infections: Lessons from conventional, molecular and metagenomic analyses. Virulence. 6 (3): 183–187. https://doi.org/10.4161/21505594.2014.980661.

CAS  Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif