Circ_0060077 Knockdown Alleviates High-Glucose-Induced Cell Apoptosis, Oxidative Stress, Inflammation and Fibrosis in HK-2 Cells via miR-145-5p/VASN Pathway

Magee, C., D.J. Grieve, C.J. Watson, and D.P. Brazil. 2017. Diabetic Nephropathy: A Tangled Web to Unweave. Cardiovascular Drugs and Therapy 31 (5–6): 579–592. https://doi.org/10.1007/s10557-017-6755-9.

Article  PubMed  PubMed Central  Google Scholar 

Rossing P. 2006. Prediction, progression and prevention of diabetic nephropathy. The Minkowski Lecture 2005. Diabetologia 49 (1): 11–19. https://doi.org/10.1007/s00125-005-0077-3.

Loeffler, I., and G. Wolf. 2015. Epithelial-to-Mesenchymal Transition in Diabetic Nephropathy: Fact or Fiction? Cells 4 (4): 631–652. https://doi.org/10.3390/cells4040631.

Article  PubMed  PubMed Central  Google Scholar 

Ni, W.J., L.Q. Tang, and W. Wei. 2015. Research progress in signalling pathway in diabetic nephropathy. Diabetes/Metabolism Research and Reviews 31 (3): 221–233. https://doi.org/10.1002/dmrr.2568.

Article  PubMed  Google Scholar 

Alicic, R.Z., M.T. Rooney, and K.R. Tuttle. 2017. Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clinical Journal of the American Society of Nephrology 12 (12): 2032–2045. https://doi.org/10.2215/CJN.11491116.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ebbesen, K.K., T.B. Hansen, and J. Kjems. 2017. Insights into circular RNA biology. RNA Biology 14 (8): 1035–1045. https://doi.org/10.1080/15476286.2016.1271524.

Article  PubMed  Google Scholar 

Hansen, T.B., T.I. Jensen, B.H. Clausen, J.B. Bramsen, B. Finsen, C.K. Damgaard, and J. Kjems. 2013. Natural RNA circles function as efficient microRNA sponges. Nature 495 (7441): 384–388. https://doi.org/10.1038/nature11993.

CAS  Article  PubMed  Google Scholar 

Han, B., J. Chao, and H. Yao. 2018. Circular RNA and its mechanisms in disease: From the bench to the clinic. Pharmacology & Therapeutics 187: 31–44. https://doi.org/10.1016/j.pharmthera.2018.01.010.

CAS  Article  Google Scholar 

Zhao, L., H. Chen, Y. Zeng, K. Yang, R. Zhang, Z. Li, T. Yang, and H. Ruan. 2021. Circular RNA circ_0000712 regulates high glucose-induced apoptosis, inflammation, oxidative stress, and fibrosis in (DN) by targeting the miR-879-5p/SOX6 axis. Endocrine Journal. https://doi.org/10.1507/endocrj.EJ20-0739.

Article  PubMed  Google Scholar 

An, L., D. Ji, W. Hu, J. Wang, X. Jin, Y. Qu, and N. Zhang. 2020. Interference of Hsa_circ_0003928 Alleviates High Glucose-Induced Cell Apoptosis and Inflammation in HK-2 Cells via miR-151-3p/Anxa2. Diabetes, Metabolic Syndrome and Obesity 13: 3157–3168. https://doi.org/10.2147/DMSO.S265543.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Yang, L., X. Han, C. Zhang, C. Sun, S. Huang, W. Xiao, Y. Gao, Q. Liang, F. Luo, W. Lu, J. Fu, and Y. Zhou. 2020. Hsa_circ_0060450 Negatively Regulates Type I Interferon-Induced Inflammation by Serving as miR-199a-5p Sponge in Type 1 Diabetes Mellitus. Frontiers in Immunology 11: 576903. https://doi.org/10.3389/fimmu.2020.576903.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Tang, J., D. Yao, H. Yan, X. Chen, L. Wang, and H. Zhan. 2019. The Role of MicroRNAs in the Pathogenesis of Diabetic Nephropathy. International Journal of Endocrinology 2019: 8719060. https://doi.org/10.1155/2019/8719060.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Liu, L., H. Chen, J. Yun, L. Song, X. Ma, S. Luo, and Y. Song. 2021. miRNA-483-5p Targets HDCA4 to Regulate Renal Tubular Damage in Diabetic Nephropathy. Hormone and Metabolic Research. https://doi.org/10.1055/a-1480-7519.

Article  PubMed  Google Scholar 

Chen, X., L. Gu, X. Cheng, J. Xing, and M. Zhang. 2021. MiR-17-5p downregulation alleviates apoptosis and fibrosis in high glucose-induced human mesangial cells through inactivation of Wnt/beta-catenin signaling by targeting KIF23. Environmental Toxicology. https://doi.org/10.1002/tox.23280.

Article  PubMed  Google Scholar 

Wei, B., Y.S. Liu, and H.X. Guan. 2020. MicroRNA-145-5p attenuates high glucose-induced apoptosis by targeting the Notch signaling pathway in podocytes. Experimental and Therapeutic Medicine 19 (3): 1915–1924. https://doi.org/10.3892/etm.2020.8427.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Liang, W., B. Guo, J. Ye, H. Liu, W. Deng, C. Lin, X. Zhong, and L. Wang. 2019. Vasorin stimulates malignant progression and angiogenesis in glioma. Cancer Science 110 (8): 2558–2572. https://doi.org/10.1111/cas.14103.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bhandari, A., Y. Guan, E. Xia, Q. Huang, and Y. Chen. 2019. VASN promotes YAP/TAZ and EMT pathway in thyroid carcinogenesis in vitro. American Journal of Translational Research 11 (6): 3589–3599.

CAS  PubMed  PubMed Central  Google Scholar 

Cui F.L., A.N., Mahmud, Z.P. Xu, Z.Y. Wang, and J.P. Hu. 2020. VASN promotes proliferation of prostate cancer through the YAP/TAZ axis. European Review for Medical and Pharmacological Sciences 24 (12): 6589–6596. https://doi.org/10.26355/eurrev_202006_21644.

Ahn, J.M., B.G. Kim, M.H. Yu, I.K. Lee, and J.Y. Cho. 2010. Identification of diabetic nephropathy-selective proteins in human plasma by multi-lectin affinity chromatography and LC-MS/MS. Proteomics. Clinical Applications 4 (6–7): 644–653. https://doi.org/10.1002/prca.200900196.

CAS  Article  PubMed  Google Scholar 

Jin, J., H. Sun, C. Shi, H. Yang, Y. Wu, W. Li, Y.H. Dong, L. Cai, and X.M. Meng. 2020. Circular RNA in renal diseases. Journal of Cellular and Molecular Medicine 24 (12): 6523–6533. https://doi.org/10.1111/jcmm.15295.

Article  PubMed  PubMed Central  Google Scholar 

Zhang, J.R., and H.J. Sun. 2020. Roles of circular RNAs in diabetic complications: From molecular mechanisms to therapeutic potential. Gene 763: 145066. https://doi.org/10.1016/j.gene.2020.145066.

CAS  Article  PubMed  Google Scholar 

Meng, Q., X. Zhai, Y. Yuan, Q. Ji, and P. Zhang. 2020. lncRNA ZEB1-AS1 inhibits high glucose-induced EMT and fibrogenesis by regulating the miR-216a-5p/BMP7 axis in diabetic nephropathy. Brazilian Journal of Medical and Biological Research 53 (4): e9288. https://doi.org/10.1590/1414-431X20209288.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wang, J., and S.M. Zhao. 2021. LncRNA-antisense non-coding RNA in the INK4 locus promotes pyroptosis via miR-497/thioredoxin-interacting protein axis in diabetic nephropathy. Life Sciences 264: 118728. https://doi.org/10.1016/j.lfs.2020.118728.

CAS  Article  PubMed  Google Scholar 

Liu, H., X. Wang, Z.Y. Wang, and L. Li. 2020. Circ_0080425 inhibits cell proliferation and fibrosis in diabetic nephropathy via sponging miR-24-3p and targeting fibroblast growth factor 11. Journal of Cellular Physiology 235 (5): 4520–4529. https://doi.org/10.1002/jcp.29329.

CAS  Article  PubMed  Google Scholar 

Tang, B., W. Li, T.T. Ji, X.Y. Li, X. Qu, L. Feng, and S. Bai. 2020. Circ-AKT3 inhibits the accumulation of extracellular matrix of mesangial cells in diabetic nephropathy via modulating miR-296-3p/E-cadherin signals. Journal of Cellular and Molecular Medicine 24 (15): 8779–8788. https://doi.org/10.1111/jcmm.15513.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Li, J., X. Jiang, L. Duan, and W. Wang. 2019. Long non-coding RNA MEG3 impacts diabetic nephropathy progression through sponging miR-145. American Journal of Translational Research 11 (10): 6691–6698.

CAS  PubMed  PubMed Central  Google Scholar 

Liu B., L. Qiang, G.D. Wang, Q. Duan, and J. Liu. 2019. LncRNA MALAT1 facilities high glucose induced endothelial to mesenchymal transition and fibrosis via targeting miR-145/ZEB2 axis. European Review for Medical and Pharmacological Sciences 23 (8): 3478–3486. https://doi.org/10.26355/eurrev_201904_17713.

留言 (0)

沒有登入
gif