NIR Spectroscopy as an Online PAT Tool for a Narrow Therapeutic Index Drug: Toward a Platform Approach Across Lab and Pilot Scales for Development of a Powder Blending Monitoring Method and Endpoint Determination

Institute NC. [Available from: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/phenytoin-sodium. Accessed 09/11/2022.

FDA. FY 2015 Regulatory Science Research Report: Narrow Therapeutic Index Drugs. 2015. https://www.fda.gov/industry/generic-drug-user-fee-amendments/fy2015-regulatory-science-research-reportnarrow-therapeutic-index-drugs. Accessed 09/11/2022.

Levy G. What are narrow therapeutic index drugs? Clin Pharmacol Ther. 1998;63(5):501–5.

CAS  PubMed  Article  Google Scholar 

Muller PY, Milton MN. The determination and interpretation of the therapeutic index in drug development. Nat Rev Drug Discovery. 2012;11(10):751–61.

CAS  PubMed  Article  Google Scholar 

Greenberg RG, Melloni C, Wu H, Gonzalez D, Ku L, Hill KD, et al. Therapeutic index estimation of antiepileptic drugs: a systematic literature review approach. Clin Neuropharmacol. 2016;39(5):232–40.

CAS  PubMed  PubMed Central  Article  Google Scholar 

National Archives, Code of Federal Regulations. 21 CFR Part 211.110. Sampling and testing of in-process materials and drug products. chrome extension://efaidnbmnnnibpcajpcglclefindmkaj/ https://www.govinfo.gov/content/pkg/CFR-2021-title21-vol4/pdf/CFR-2021-title21-vol4-sec211-110.pdf. Accessed on 09/11/2022.

CDER, CBER. Guidance for Industry Q8(R2) Pharmaceutical Development Silver Spring, Maryland: Food and Drug Administration (FDA) Center for Drug Evaluation and Research. In: Regulatory Information. FDA. 2009. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/q8r2-pharmaceutical-development. Accessed 12 Sept 2022.

Chiang PC, Wong H. Incorporation of physiologically based pharmacokinetic modeling in the evaluation of solubility requirements for the salt selection process: a case study using phenytoin. AAPS J. 2013;15(4):1109–18.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Madhavi N, Sudhakar B, Ravikanth PV, Mohon K, Murthy KVRJJoB,. Bioavailability. Formulation Eval Phenytoin Sodium Sustained Release Matrix Tablet. 2013;4:1–6.

Google Scholar 

Gugler R, Manion CV, Azarnoff DL. Phenytoin: pharmacokinetics and bioavailability. Clin Pharmacol Ther. 1976;19(2):135–42.

CAS  PubMed  Article  Google Scholar 

Neuvonen PJ. Bioavailability of phenytoin: clinical pharmacokinetic and therapeutic implications. Clin Pharmacokinet. 1979;4(2):91–103.

CAS  PubMed  Article  Google Scholar 

Sekikawa H, Fujiwara J, Naganuma T, Nakano M, Arita T. Dissolution behaviors and gastrointestinal absorption of phenytoin in phenytoin-polyvinylpyrrolidone coprecipitate. Chem Pharm Bull. 1978;26(10):3033–9.

CAS  Article  Google Scholar 

Barnes JN, Rascati KL. Switching of antiepileptic drug formulations. The journal of pediatric pharmacology and therapeutics : JPPT : the official journal of PPAG. 2010;15(2):64–5.

Google Scholar 

Borgheini G. The bioequivalence and therapeutic efficacy of generic versus brand-name psychoactive drugs. Clin Ther. 2003;25(6):1578–92.

PubMed  Article  Google Scholar 

Rosenbaum DH, Rowan AJ, Tuchman L, French JA. Comparative bioavailability of a generic phenytoin and dilantin. Epilepsia. 1994;35(3):656–60.

CAS  PubMed  Article  Google Scholar 

Hickey AJ, D. G. Pharmaceutical Process Engineering. Drugs and the pharmaceutical sciences, v. 195. 2nd ed: New York : Informa Healthcare; 2010. p. 155–6.

Xie L, Wu H, Shen M, Augsburger LL, Lyon RC, Khan MA, et al. Quality-by-design (QbD): effects of testing parameters and formulation variables on the segregation tendency of pharmaceutical powder measured by the ASTM D 6940–04 segregation tester. J Pharm Sci. 2008;97(10):4485–97.

CAS  PubMed  Article  Google Scholar 

Alexander A, Muzzio FJ, Shinbrot T. Segregation patterns in V-blenders. Chem Eng Sci. 2003;58(2):487–96.

CAS  Article  Google Scholar 

Alexander A, Shinbrot T, Johnson B, Muzzio FJ. V-blender segregation patterns for free-flowing materials: effects of blender capacity and fill level. Int J Pharm. 2004;269(1):19–28.

CAS  PubMed  Article  Google Scholar 

Arratia PE, Duong N-H, Muzzio FJ, Godbole P, Lange A, Reynolds S. Characterizing mixing and lubrication in the Bohle Bin blender. Powder Technol. 2006;161(3):202–8.

CAS  Article  Google Scholar 

Bridgwater J. Fundermental Powder Mixing Mechanisms. Powder Technol. 1976;15(2):215–36.

Article  Google Scholar 

Lacey PMC. Developments in the theory of particle mixing. J Appl Chem. 1954;4(5):257–68.

CAS  Article  Google Scholar 

Moakher M, Shinbrot T, Muzzio FJ. Experimentally validated computations of flow, mixing and segregation of non-cohesive grains in 3D tumbling blenders. Powder Technol. 2000;109(1–3):58–71.

CAS  Article  Google Scholar 

Sudah OS, Coffin-Beach D, Muzzio FJ. Effects of blender rotational speed and discharge on the homogeneity of cohesive and free-flowing mixtures. Int J Pharm. 2002;247(1–2):57–68.

CAS  PubMed  Article  Google Scholar 

Williams JC. The mixing of dry powders. Powder Technol. 1968;2(1):13–20.

CAS  Article  Google Scholar 

Yin T. A guide to blend uniformity. J GXP Compl. 2007;12(1):46–51.

Google Scholar 

Igne B, Juan Ad, Jaumot J, Lallemand J, Preys S, Drennen JK, et al. Modeling strategies for pharmaceutical blend monitoring and end-point determination by near-infrared spectroscopy. Int J Pharm. 2014;473(1):219–31.

CAS  PubMed  Article  Google Scholar 

Igne B, Talwar S, Drennen JK, Anderson CA. Online monitoring of pharmaceutical materials using multiple NIR sensors—part II: blend end-point determination. J Pharm Innov. 2013;8(1):45–55.

Article  Google Scholar 

Lyon RC, Lester DS, Lewis EN, Lee E, Yu LX, Jefferson EH, et al. Near-infrared spectral imaging for quality assurance of pharmaceutical products: analysis of tablets to assess powder blend homogeneity. AAPS PharmSciTech. 2002;3(3):E17.

PubMed  Article  Google Scholar 

Wu H, White M, Khan M. An integrated process analytical technology (PAT) approach for process dynamics-related measurement error evaluation and process design space development of a pharmaceutical powder blending bed. Org Process Res Dev. 2015;19(1):215–26.

CAS  Article  Google Scholar 

CDER, CVM, ORA. Guidance for Industry PAT — A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance. In: Regulatory Information. FDA. 2004. https://www.fda.gov/regulatoryinformation/search-fda-guidance-documents/pat-framework-innovative-pharmaceutical-development-manufacturing-and-quality-assurance. Accessed 12 Sept 2022.

Gouveia FF, Rahbek JP, Mortensen AR, Pedersen MT, Felizardo PM, Bro R, et al. Using PAT to accelerate the transition to continuous API manufacturing. Anal Bioanal Chem. 2017;409(3):821–32.

CAS  PubMed  Article  Google Scholar 

Hitzer P, Bäuerle T, Drieschner T, Ostertag E, Paulsen K, van Lishaut H, et al. Process analytical techniques for hot-melt extrusion and their application to amorphous solid dispersions. Anal Bioanal Chem. 2017;409(18):4321–33.

CAS  PubMed  Article  Google Scholar 

Laske S, Paudel A, Scheibelhofer O, Sacher S, Hoermann T, Khinast J, et al. A review of PAT strategies in secondary solid oral dosage manufacturing of small molecules. J Pharm Sci. 2017;106(3):667–712.

CAS  PubMed  Article  Google Scholar 

Porfire A, Filip C, Tomuta I. High-throughput NIR-chemometric methods for chemical and pharmaceutical characterization of sustained release tablets. J Pharm Biomed Anal. 2017;138:1–13.

CAS  PubMed  Article  Google Scholar 

Wu H, Tawakkul M, White M, Khan MA. Quality-by-design (QbD): an integrated multivariate approach for the component quantification in powder blends. Int J Pharm. 2009;372(1–2):39–48.

CAS  PubMed  Article  Google Scholar 

Biagi D, Nencioni P, Valleri M, Calamassi N, Mura P. Development of a near infrared spectroscopy method for the in-line quantitative bilastine drug determination during pharmaceutical powders blending. J Pharm Biomed Anal. 2021;204: 114277.

CAS  PubMed  Article  Google Scholar 

Blanco M, Gozález Bañó R, Bertran E. Monitoring powder blending in pharmaceutical processes by use of near infrared spectroscopy. Talanta. 2002;56(1):203–12.

CAS  PubMed  Article  Google Scholar 

Berman J, Elinski DE, Gonzales CR, Hofer JD, Jimenez PJ, Planchard JA, et al. Blend uniformity analysis: validation and in-process testing Technical Report No. 25 PDA PDA (Parenteral Drug association). PDA J Pharm Sci Technol. 1997;51(Suppl 3:i-iii):1–99.

Google Scholar 

Carstensen JT, Rhodes CT. Sampling in blending validation. Drug Dev Ind Pharm. 1993;19(20):2699–708.

CAS  Article  Google Scholar 

Harwood C, Ripley T. Errors associated with the thief probe for bulk powder sampling. J Powder Bulk Solids Technol. 1977;11:20–9.

Google Scholar 

Muzzio FJ, Goodridge CL, Alexander A, Arratia P, Yang H, Sudah O, et al. Sampling and characterization of pharmaceutical powders and granular blends. Int J Pharm. 2003;250(1):51–64.

CAS  PubMed  Article  Google Scholar 

Danckwerts PV. Theory of mixtures and mixing. Chem Eng Res. 1953;6:355–61.

Google Scholar 

Wargo DJ, Drennen JK. Near-infrared spectroscopic characterization of pharmaceutical powder blends. J Pharm Biomed Anal. 1996;14(11):1415–23.

CAS  PubMed  Article  Google Scholar 

Wu H, Tawakkul M, White M, Khan MA. Quality-by-design (QbD): an integrated multivariate approach for the component quantification in powder blends. Int J Pharm. 2009;372(1):39–48.

CAS  PubMed  Article  Google Scholar 

Igne B, Zacour BM, Shi Z, Talwar S, Anderson CA, Drennen JK. Online monitoring of pharmaceutical materials using multiple NIR sensors—part I: blend homogeneity. J Pharm Innov. 2011;6(1):47–59.

Article  Google Scholar 

Martínez-Cartagena PA, Sierra-Vega NO, Alvarado-Hernández BB, Méndez R, Romañach RJ. An innovative sampling interface for monitoring flowing pharmaceutical powder mixtures. J Pharm Biomed Anal. 2021;194: 113785.

PubMed  Article 

留言 (0)

沒有登入
gif