The roles of small extracellular vesicles in cancer and immune regulation and translational potential in cancer therapy

Théry C, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7:1535750. https://doi.org/10.1080/20013078.2018.1535750.

Article  PubMed  PubMed Central  Google Scholar 

Buzas EI. The roles of extracellular vesicles in the immune system. Nat Rev Immunol. 2022:1–15. https://doi.org/10.1038/s41577-022-00763-8. Epub ahead of print. PMID: 35927511; PMCID: PMC9361922.

Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science (New York, NY). 2020;367(6478):eaau6977. https://doi.org/10.1126/science.aau6977.

CAS  Article  Google Scholar 

Isaac R, Reis FCG, Ying W, Olefsky JM. Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metab. 2021;33:1744–62. https://doi.org/10.1016/j.cmet.2021.08.006.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Mathivanan S, Fahner CJ, Reid GE, Simpson RJ. ExoCarta 2012: database of exosomal proteins. Nucleic Acids Res. 2012;40:D1241-1244. https://doi.org/10.1093/nar/gkr828.

CAS  Article  PubMed  Google Scholar 

Möller A, Lobb RJ. The evolving translational potential of small extracellular vesicles in cancer. Nat Rev Cancer. 2020;20:697–709. https://doi.org/10.1038/s41568-020-00299-w.

CAS  Article  PubMed  Google Scholar 

Fordjour FK, Daaboul GG, Gould SJ. A shared pathway of exosome biogenesis operates at plasma and endosome membranes. bioRxiv. 2019:545228. https://doi.org/10.1101/545228.

Raiborg C, Stenmark H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature. 2009;458:445–52. https://doi.org/10.1038/nature07961.

CAS  Article  PubMed  Google Scholar 

Hurley JH, Hanson PI. Membrane budding and scission by the ESCRT machinery: it’s all in the neck. Nat Rev Mol Cell Biol. 2010;11:556–66. https://doi.org/10.1038/nrm2937.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ghossoub R, et al. Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat Commun. 2014;5:3477. https://doi.org/10.1038/ncomms4477.

CAS  Article  PubMed  Google Scholar 

Fujii K, Hurley JH, Freed EO. Beyond Tsg101: the role of Alix in “ESCRTing” HIV-1. Nat Rev Microbiol. 2007;5:912–6. https://doi.org/10.1038/nrmicro1790.

CAS  Article  PubMed  Google Scholar 

Baietti MF, et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012;14:677–85. https://doi.org/10.1038/ncb2502.

CAS  Article  PubMed  Google Scholar 

Ridder K, et al. Extracellular vesicle-mediated transfer of functional RNA in the tumor microenvironment. Oncoimmunology. 2015;4:e1008371. https://doi.org/10.1080/2162402x.2015.1008371.

Article  PubMed  PubMed Central  Google Scholar 

Stuffers S, Sem Wegner C, Stenmark H. Brech A Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic (Copenhagen, Denmark). 2009;10:925–37. https://doi.org/10.1111/j.1600-0854.2009.00920.x.

CAS  Article  Google Scholar 

Babst M. MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between. Curr Opin Cell Biol. 2011;23:452–7. https://doi.org/10.1016/j.ceb.2011.04.008.

CAS  Article  PubMed  PubMed Central  Google Scholar 

van Niel G, et al. The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev Cell. 2011;21:708–21. https://doi.org/10.1016/j.devcel.2011.08.019.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89. https://doi.org/10.1146/annurev-cellbio-101512-122326.

CAS  Article  PubMed  Google Scholar 

Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12(1):19–30; sup pp 1–13. https://doi.org/10.1038/ncb2000. Epub 2009 Dec 6. PMID: 19966785.

Wu P, Zhang B, Ocansey DKW, Xu W, Qian H. Extracellular vesicles: A bright star of nanomedicine. Biomaterials. 2021;269:120467. https://doi.org/10.1016/j.biomaterials.2020.120467.

CAS  Article  PubMed  Google Scholar 

Parolini I, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem. 2009;284:34211–22. https://doi.org/10.1074/jbc.M109.041152.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Pegtel DM, Gould SJ. Exosomes. 2019;88:487–514. https://doi.org/10.1146/annurev-biochem-013118-111902.

CAS  Article  Google Scholar 

Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014;3. https://doi.org/10.3402/jev.v3.24641. PMID: 25143819; PMCID: PMC4122821.

Paolillo M, Schinelli S. Integrins and Exosomes, a Dangerous Liaison in Cancer Progression. Cancers. 2017;9(8):95. https://doi.org/10.3390/cancers9080095.

CAS  Article  PubMed Central  Google Scholar 

Zeng Z, et al. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat Commun. 2018;9:5395. https://doi.org/10.1038/s41467-018-07810-w.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zhao H, et al. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife. 2016;5:e10250. https://doi.org/10.7554/eLife.10250.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zhou W, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell. 2014;25:501–15. https://doi.org/10.1016/j.ccr.2014.03.007.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hoshino A, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329–35. https://doi.org/10.1038/nature15756.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Katoh M. Therapeutics targeting angiogenesis: genetics and epigenetics, extracellular miRNAs and signaling networks (Review). Int J Mol Med. 2013;32:763–7. https://doi.org/10.3892/ijmm.2013.1444.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Qiu JJ, et al. Exosomal Metastasis-Associated Lung Adenocarcinoma Transcript 1 Promotes Angiogenesis and Predicts Poor Prognosis in Epithelial Ovarian Cancer. Int J Biol Sci. 2018;14:1960–73. https://doi.org/10.7150/ijbs.28048.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Yoshizaki T, et al. Pathogenic role of Epstein-Barr virus latent membrane protein-1 in the development of nasopharyngeal carcinoma. Cancer Lett. 2013;337:1–7. https://doi.org/10.1016/j.canlet.2013.05.018.

CAS  Article  PubMed  Google Scholar 

Wang X, Luo G, Zhang K, Cao J, Huang C, Jiang T, et al. Hypoxic Tumor-Derived Exosomal miR-301a Mediates M2 Macrophage Polarization via PTEN/PI3Kγ to Promote Pancreatic Cancer Metastasis. Cancer Res. 2018;78(16):4586–98. https://doi.org/10.1158/0008-5472.CAN-17-3841. Epub 2018 Jun 7. Erratum in: Cancer Res. 2020 Feb 15;80(4):922. PMID: 29880482.

You Y, et al. Matrix metalloproteinase 13-containing exosomes promote nasopharyngeal carcinoma metastasis. Cancer Sci. 2015;106:1669–77. https://doi.org/10.1111/cas.12818.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Mashouri L, et al. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. 2019;18:75. https://doi.org/10.1186/s12943-019-0991-5.

Article  PubMed  PubMed Central  Google Scholar 

Cai Z, et al. Activated T cell exosomes promote tumor invasion via Fas signaling pathway. J Immunol. 2012;188:5954–61. https://doi.org/10.4049/jimmunol.1103466.

CAS  Article  PubMed  Google Scholar 

Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discovery. 2006;5:219–34. https://doi.org/10.1038/nrd1984.

CAS  Article  PubMed  Google Scholar 

Shao B, et al. Effects of Tumor-Derived Exosome Programmed Death Ligand 1 on Tumor Immunity and Clinical Applications. Front Cell Dev Biol. 2021;9:760211. https://doi.org/10.3389/fcell.2021.760211.

Article  PubMed  PubMed Central  Google Scholar 

Thakur A, Parra DC, Motallebnejad P, Brocchi M, Chen HJ. Exosomes: Small vesicles with big roles in cancer, vaccine development, and therapeutics. Bioactive materials. 2022;10:281–94. https://doi.org/10.1016/j.bioactmat.2021.08.029.

CAS  Article  PubMed  Google Scholar 

Kurywchak P, Tavormina J, Kalluri R. The emerging roles of exosomes in the modulation of immune responses in cancer. Genome medicine. 2018;10:23. https://doi.org/10.1186/s13073-018-0535-4.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Shen M, Ren X. New insights into the biological impacts of immune cell-derived exosomes within the tumor environment. Cancer Lett. 2018;431:115–22. https://doi.org/10.1016/j.canlet.2018.05.040.

CAS  Article  PubMed  Google Scholar 

Zitvogel L, et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med. 1998;4:594–600. https://doi.org/10.1038/nm0598-594.

CAS 

留言 (0)

沒有登入
gif